IF AND HOW IMPLEMENTATION ATTACKS SHAPE THE DESIGN OF LATTICE-BASED SIGNATURE SCHEMES

16th IMA International Conference on Cryptography and Coding 2017 12/12/2017

Nina Bindel TU Darmstadt

PASSIVE AND ACTIVE ATTACKS

Active

Fault attacks

"allow to extract secret information by disturbing the cryptographic computation"

Zeroing, skipping, Randomization faults

Passive

Side-channel attacks

"monitor the behavior of the target device while executing"

Timing, power, cache side channels

IMPLEMENTATION ATTACKS AGAINST LATTICE-BASED SIGNATURES IN THE LITERATURE

Year	Authors	IACR eprint	Туре	Schemes
2012	Kamal and Youssef		FA	NTRUSign
2016	Espitau, Fouque, Gérard, and Tibouchi	2016/449	FA	GLP, BLISS, ring-TESLA, GPV-NTRU, PassSign
	Bindel, Buchmann, and Krämer	2016/415	FA	GLP, BLISS, ring-TESLA
	Groot Bruinderink, Hülsing, Lange, and Yarom	2016/300	Cache SC	BLISS
	Saarinen	2016/276	Cache SC	BLISS
	Pessl	2017/033	Cache SC	BLISS
	Bindel, Buchmann, Krämer, Mantel, Schickel, and Weber	2017/951	Cache SC	ring-TESLA
2017	Espitau, Fouque, Gerard, and Tibouchi	2017/505	(Power) SC	BLISS
	Pessl, Groot Bruinderink, and Yarom	2017/490	Cache SC	BLISS

Aren't implementation attacks only interesting for implementers?

Or are they also interesting for the designers of schemes?

How fault attacks shape the design

Known attacks	Probabilistic
	VS.
	deterministic

Concrete examples: **qTESLA** https://tesla.informatik.tu-darmstadt.de/de/tesla

channels using program semantic

How fault attacks shape the design

Known attacks	Probabilistic
	VS.
	deterministic

Gaussian sampling	Analysis of cache side channels using program semantic
	Johnanne

RANDOMIZATION OF SMALL SECRET AND ERROR

LWE

public key: $\mathbf{a} \leftarrow_{\$} \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$, $\mathbf{b} = \mathbf{a} \cdot \mathbf{s} + \mathbf{e} \mod \mathbf{q}$

Possible alternative: Binary LWE with s,e small coefficients

Problem: much easier to run randomization attack during signature generation [IACR eprint 2016/415]

IDEA RANDOMIZATION ATTACK

 \bigcirc

1st Insert fault: change one coeff. $s_i \in \{-1,0,1\}$ to $s_i' \in \{-1,0,1\}$

2nd Software computation: find index i and determine value of s_i by "intelligent brute force"

• if $s_i \in A$ \rightarrow too many possibilitites for $s_i \rightarrow$ attack is not feasible

can also be prevented by implementing countermeasure

How fault attacks shape the design

Known attacks	Probabilistic
	VS.
	deterministic

Gaussian sampling	Analysis of cache side channels using program
	semantic

DETERMINISTIC SIGNATURE QTESLA

DETERMINISTIC VS PROBABILIST SIGNATURE

Advantages deterministic signature:

No need of of high-quality randomness

ightarrow easier to be implemented

BUT possible vulnerability to fault attack might be introduced....

FAULT ATTACK ON DETERMINISTC SIGNATURE

by Poddebniak, Somorovsky, Schinzel, Lochter, and Rösler [eprint 2017/1014]

FAULT ATTACK ON DETERMINISTC SIGNATURE

by Poddebniak, Somorovsky, Schinzel, Lochter, and Rösler [eprint 2017/1014]

How fault attacks shape the design

Known attacks	Probabilistic
	VS.
	deterministic

How side channels shape the design

Gaussian sampling	Analysis of cache side channels using program
	semantic

GAUSSIAN VS UNIFORM SAMPLING DURING SIGN

Signature z = y + sc

How fault attacks shape the design

Known attacks	Probabilistic
	VS.
	deterministic

CACHE SIDE CHANNELS

- \circ Cache = memory to store entries for quick access
- \circ cached entries are available faster (hit) than uncached entries (miss)
 - \rightarrow example attack: measure victim execution time
- Analysis of cache-side-channel vlunerability with code inspection and program analysis [eprint 2017/951]

MITIGATION IN SUBROUTINES = ZERO LEAKAGE?

Mitigation in subroutines does not lead to zero leakage in sign

Why?

- \odot length of cache trace depends on rejection
- o only leaks the number of tries to generate valid signature
- ${\scriptstyle \bigcirc}$ upper bounds are conservative, not tight
- ${\scriptstyle \bigcirc}$ bounds are low compared to key size
 - \circ key size: 49 152 bit*
 - $_{\odot}$ bit leakage: 48.6 bit* \rightarrow 0.1% of bits are leaked

* results correspond to ring-TESLA; qTESLA should be about the same e
1. counter ← 0
d ← PRF(seed, m)
PRF(rand, counter)
4. c ← H([ay], m)
5. z ← y + sc
6. if ay - ec is not small enough: counter++ and retry at step 1
7. if z is not small enough: counter++ and retry at step 1
8. 8. return (z,c)

CONCLUSION

- Summarized state-of-the-art of implementation attacks for lattice-based signature schemes
- We saw that ...
 - ... concret fault attack influence choice of secret key
 - ... deterministic signatures might be more vulnerable to a fault attack
 - ... side channels influence the choice of randomness during sign
 - ... the provable mitigation of some chache side channels is very hard even impossible because of the design
- Disclaimer: no performance comparison

