
IF AND HOW IMPLEMENTATION ATTACKS SHAPE THE DESIGN
OF LATTICE-BASED SIGNATURE SCHEMES

Nina Bindel
TU Darmstadt

16th IMA International Conference

on Cryptography and Coding 2017

12/12/2017

WHAT ARE IMPLEMENTATION ATTACKS?

2

Mathematical cryptanalysis

Implementation attacks

PASSIVE AND ACTIVE ATTACKS

4

Passive

Side-channel attacks

“allow to extract secret information by

disturbing the cryptographic computation”

“monitor the behavior of the target

device while executing”

Zeroing, skipping, Randomization faults Timing, power, cache side channels

Active

Fault attacks

IMPLEMENTATION ATTACKS AGAINST LATTICE-
BASED SIGNATURES IN THE LITERATURE

5

Year Authors IACR eprint Type Schemes

2012 Kamal and Youssef FA NTRUSign

2016

Espitau, Fouque, Gérard, and Tibouchi 2016/449 FA GLP, BLISS, ring-TESLA,

GPV-NTRU, PassSign

Bindel, Buchmann, and Krämer 2016/415 FA GLP, BLISS, ring-TESLA

Groot Bruinderink, Hülsing, Lange, and Yarom 2016/300 Cache SC BLISS

Saarinen 2016/276 Cache SC BLISS

Pessl 2017/033 Cache SC BLISS

2017

Bindel, Buchmann, Krämer, Mantel, Schickel, and Weber 2017/951 Cache SC ring-TESLA

Espitau, Fouque, Gerard, and Tibouchi 2017/505 (Power) SC BLISS

Pessl, Groot Bruinderink, and Yarom 2017/490 Cache SC BLISS

6

Aren‘t implementation attacks only

interesting for implementers?

Or are they also interesting for the

designers of schemes?

OUTLINE

7

How fault attacks shape the design

How (cache-) side channels shape the design

Probabilistic

vs.

deterministic

Gaussian sampling Analysis of cache side

channels using program

semantic

Known attacks

Concrete examples: qTESLA

https://tesla.informatik.tu-darmstadt.de/de/tesla

OUTLINE

8

How fault attacks shape the design

How (cache-) side channels shape the design

Known attacks Probabilistic

vs.

deterministic

Analysis of cache side

channels using program

semantic

Gaussian sampling

RANDOMIZATION OF SMALL SECRET AND ERROR

9

LWE

=+

A ∙ s + e = b mod q

qTESLA

secret key:

public key:

s,e ←𝜎 ℤ 𝑥 /〈𝑥𝑛 + 1〉

a ←$ ℤ𝑞 𝑥 /〈𝑥𝑛 + 1〉, b = a ∙ s + e mod q

Possible alternative:

Binary LWE with s,e small coefficients

Problem: much easier to run randomization attack during

signature generation [IACR eprint 2016/415]

IDEA RANDOMIZATION ATTACK

10

1st Insert fault: change one coeff. si ∈ {−1,0,1} to si′ ∈ {−1,0,1}

2nd Software computation: find index i and determine value of si
by “intelligent brute force”

Smaller interval of secret coeff.s

More efficient computation/attack

o if s,e ←  too many possibilitites for si  attack is not feasible

o can also be prevented by implementing countermeasure

OUTLINE

11

How fault attacks shape the design

How (cache-) side channels shape the design

Known attacks Probabilistic

vs.

deterministic

Analysis of cache side

channels using program

semantic

Gaussian sampling

DETERMINISTIC SIGNATURE QTESLA

12

m,

sk = (s, e, seed, a)
(z, c)

1. counter ← 0

2. rand ← PRF(seed, m)

3. y ← PRF(rand, counter)

4. c ← H ay ,m

5. z ← y + sc

6. if ay − ec is not small enough: (Correctness)

counter++ and retry at step 1

7. if z is not small enough: (Security)

counter++ and retry at step 1

8. return (z,c)

DETERMINISTIC VS PROBABILIST SIGNATURE

13

Advantages deterministic signature:

 Use different randomness for different messages

 prevent attacks that exploit fixed randomness

 No need of of high-quality randomness

 easier to be implemented

BUT possible vulnerability to fault attack might be

introduced….

FAULT ATTACK ON DETERMINISTC SIGNATURE

14

(z, c)
1. counter ← 0

2. rand ← PRF(seed, m)

3. y ← PRF(rand, counter)

4. c ← H ay ,m

5. z ← y + sc

6. if ay − ec is not small enough:

counter++ and retry at step 1

7. if z is not small enough:
counter++ and retry at step 1

8. return (z,c)

1

by Poddebniak, Somorovsky, Schinzel, Lochter, and Rösler [eprint 2017/1014]

m, sk

FAULT ATTACK ON DETERMINISTC SIGNATURE

15

(z, c)
1. counter ← 0

2. rand ← PRF(seed, m)

3. y ← PRF(rand, counter)

4. c ← H ay ,m

5. z ← y + sc

6. if ay − ec is not small enough:

counter++ and retry at step 1

7. if z is not small enough:
counter++ and retry at step 1

8. return (z,c)

1

(z’, c’)

2

1. counter ← 0

2. rand ← PRF(seed, m)

3. y ← PRF(rand, counter)

4. c′ ← H ay ,m

5. z′ ← y + sc‘

6. if ay − ec′ is not small enough:

counter++ and retry at step 1

7. if z’ is not small enough:
counter++ and retry at step 1

8. return (z‘,c‘)

z - z’ = sc +y - sc’ -y

= s(c - c’)

c - c’ known  compute s

by Poddebniak, Somorovsky, Schinzel, Lochter, and Rösler [eprint 2017/1014]

1. counter ← 0

2. seed ←$ 0,1 𝜅

3. rand ← PRF(seed, m)

4. y ← PRF(rand, counter)

Possible countermeasure:

Weak

randomness

enough

m, sk

OUTLINE

16

How fault attacks shape the design

How side channels shape the design

Known attacks Probabilistic

vs.

deterministic

Analysis of cache side

channels using program

semantic

Gaussian sampling

GAUSSIAN VS UNIFORM SAMPLING DURING SIGN

Gaussian sampling of randomness

17

Uniform sampling of randomness

Signature z = y + sc

Small signatures Large signatures

Easy to implement without side channels

Easy rejection sampling
Complicated implementation of

rejection sampling

Hard to implement without side channels

used in

qTESLA

Attack on rejection sampling of BLISS

[eprint 2017/505]

Key recovery attack on BLISS and mitigations:

[eprint 2016/300, 2016/276, 2017/033, 2017/490]

OUTLINE

18

How fault attacks shape the design

How (cache-) side channels shape the design

Known attacks Probabilistic

vs.

deterministic

Analysis of cache side

channels using program

semantic

Gaussian sampling

CACHE SIDE CHANNELS

19

o Cache = memory to store entries for quick access

o cached entries are available faster (hit) than uncached entries (miss)

 example attack: measure victim execution time

o Analysis of cache-side-channel vlunerability with code inspection and

program analysis [eprint 2017/951]

ring-TESLA

x86 binary

provable upper

leakage bounds
Extended CacheAudit 0.2b

+ code inspection

Implement mitigations

INTERPRETATION OF LEAKAGE BOUNDS

o zero leakage provably no cache side channel wrt to attack model

o non-zero leakage potential vulnerabilities

20

≥
1. counter ← 0

2. rand ← PRF(seed, m)

3. y ← PRF(rand, counter)

4. c ← H ay ,m

5. z ← y + sc

6. if ay − ec is not small enough:

counter++ and retry at step 1

7. if z is not small enough:
counter++ and retry at step 1

8. 8. return (z,c)

ring-TESLA

x86 binary

Bit leakage

≤ 52 bit

MITIGATION IN SUBROUTINES = ZERO LEAKAGE?

o Mitigation in subroutines does not lead to zero leakage in sign

Why?

o length of cache trace depends on rejection

o only leaks the number of tries to generate valid signature

o upper bounds are conservative, not tight

o bounds are low compared to key size

o key size: 49 152 bit*

o bit leakage: 48.6 bit*  0.1% of bits are leaked

21

1. counter ← 0

2. rand ← PRF(seed, m)

3. y ← PRF(rand, counter)

4. c ← H ay ,m

5. z ← y + sc

6. if ay − ec is not small enough:

counter++ and retry at step 1

7. if z is not small enough:
counter++ and retry at step 1

8. 8. return (z,c)
* results correspond to ring-TESLA;

qTESLA should be about the same

CONCLUSION

• Summarized state-of-the-art of implementation attacks for lattice-based signature
schemes

• We saw that …

• … concret fault attack influence choice of secret key

• … deterministic signatures might be more vulnerable to a fault attack

• … side channels influence the choice of randomness during sign

• … the provable mitigation of some chache side channels is very hard – even impossible –

because of the design

• Disclaimer: no performance comparison

THANKS
22

Special thanks to Alexandra Weber for her

inspiration regarding the cache-side-channel slides!

