
HAMPERING FAULT ATTACKS AGAINST LATTICE-BASED 
SIGNATURE SCHEMES

— COUNTERMEASURES AND THEIR EFFICIENCY

Nina Bindel

Juliane Krämer

Johannes Schreiber
TU Darmstadt

CODES/ISSS 2017

10/15/2017



PQ CRYPTO & IMPLEMENTATION ATTACKS

o NIST‘s call for PQ submissions, November 2017: 

‘‘submissions that are secured against side channel attacks are 
considered to be more desirable‘‘

o more attention to implementation attacks during 2nd phase of

NIST‘s standardization process
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FAULT ANALYSIS OF LATTICE-BASED CRYPTO IN 
THE LITERATURE
• “Implementation attacks on PQ cryptographic schemes“ by Taha and Eisenbarth:

• Kamal and Youssef [KY12]  NTRUSign

• Kamal and Youssef [KY11], [KY13]  NTRUEncrypt

• FA of signature schemes

• Espitau, Fouque, Gérard,  and Tibouchi [EFGT16]  GLP, BLISS, ring-TESLA, GPV-NTRU, PassSign

• Bindel, Buchmann, and Krämer [BBK16]  GLP, BLISS, ring-TESLA

• FA of encryption schemes

•Oder, Schneider, Pöppelmann, and Güneysu [OSPG17]  Ring-LWE
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Fault Attack Changed Value or Op. Algorithm GLP BLISS ring-TESLA Pass-Sign GPV-NTRU

Randomization Secret Sign ? ?

Skipping

Addition Key Gen ? ?

Addition Sign ? ?

Correctness check Verify ? ?

Size check Verify ? ?

Zeroing

Secret Key Gen - ? ?

Randomness Sign ? ?

Hash polynomial Sign ? ?

Loop-abort Loop counter Key Gen & Sign

VULNERABILITIES OF LBSS
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MITITGATION OF ZEROING RANDOMNESS

o introduce new variable

o add secret to random value

o parity bits

o loop counter

o zero counting
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Fault attack Changed value or op. Algorithm GLP BLISS ring-TESLA PassSign GPV-NTRU

Randomization Secret Sign ? ?

Skipping

Addition Key Gen ? ?

Addition Sign ? ?

Correctness check Verify ? ?

Size check Verify ? ?

Zeroing

Secret Key Gen - ? ?

Randomness Sign ? ?

Hash polynomial Sign ? ?

Loop-abort Loop counter Key Gen & Sign

EFFECTIVENESS OF ZERO COUNTING
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CONTRUTION

• Investigation of tranfer of different countermeasures

• Implementation of countermeasures at the example of ring-TESLA

• Zeroing attack on randomness

• Countermeasure against zeroing attack

• Implementation and efficiency

OUTLINE
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POSSIBLE POINTS OF ATTACK

Key generation

Signature generation

• Zeroing sk

• Skip addition of e1, e2

• Zeroing y

• Skip rejection sampling
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ZEROING RANDOMNESS
Signature generation

𝑦 = 0

𝑣1, 𝑣2 = 0

c′, c ≠ 0

z = sc Compute secret!

poly vec_y; 

sample_y(vec_y); 

If(vec_y == 0) 

{ // restart: sample new 

vec_y } 

Not enough! 

Attacks works also if not all coefficients are zero

Possible Countermeasure ?
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COUNTERMEASURE AGAINST ZEROING Y

poly vec_y; 

sample_y(vec_y);

[…] 

if (count_zeroes(vec_y) > 8) { 

// restart sign

continue;

z = y + sc

}

int count_zeroes(poly p) {

int zeroes = 0;

for (int i = 0; i < PARAM_N; i++) {

if (p[i] == 0.0) {

zeroes++;

}

}

return zeroes;

}

Why 8?
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COMPUTING NUMBER OF ZEROS

Pr a = 0 | a ←$ −B, B ≈
1

4,200,000
 very small 

Why not define 𝐲𝐢 ≠ 𝟎 ?

 change in distribution might invalidate (parts of) the security reduction

 find number such that change of distribution is ≤
1

2128

 forbid polys with more than 8 zero coefficients

Attention! Depends on instance and distribution!

 might be necessary to choose value different from 8
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2ND ORDER FAULTS

Disadvantage: Skip check of if-condition for more powerful 2nd order faul attacks

poly vec_y; 

sample_y(vec_y);

[…] 

if (count_zeroes(vec_y) > 8) { 

// restart sign

continue;

z = y + sc

}

Possible solution: 

poly vec_y; 

sample_y(vec_y);

[…] 

long lambda = check_zeros(vec_y); 

poly_mul_constant(lambdaSc,Sc,lambda);

poly_add(result,vec_y,lambdaSc)

[…]
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ROUTINE CHECK_ZEROS

long check_zeros(poly p){

int zeroes = 0;

for (int i = 0; i < PARAM_N; i++) {

if (p[i] == 0.0) {

zeroes++;

}

}

if (zeroes > 8) {

return 0;

} else {

return 1;

}

}

If randomness y was faulty 

 λ = 0
 z = y + λsc = y returned

 Attacker learns nothing about s
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CRITICAL PARTS IN ASSEMBLY

Long check_zeros(poly p){

int nonzeroes = 0;

for (int i = 0; i < PARAM_N; i++) {

if (p[i] == 0.0) {

nonzeroes++;

}

}

if (zeroes > 8) {

return 0;

} else {

return 1;

}

return nonzeros;

}

1

1

asm volatile (

"cmpl $504, %0;"

"cmpl $504, %0;"

"setg %%bl;"

"setg %%bl;"

"cmpl $513, %0;"

"cmpl $513, %0;"

"setl %%bh;"

"setl %%bh;"

"andb %%bh, %%bl;"

"andb %%bh, %%bl;"

"movzbl %%bl, %1;"

"movzbl %%bl, %1;"

:"=r"(nonzeroes)

:"r"(nonzeroes)

:"%ebx"

);

14



SUMMARY COUNTERMEASURE

Combination of different countermeasures: 

o check of number of zero elements

o dummy variable 𝜆 to ‘‘automatically‘‘ delete secret

information in case of fault

o avoiding if-conditions

o limit compiler optimization if plausible

o redundant computation
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EFFICIENCY OF THE IMPLEMENTATION

Countermeasure Algorithm Additonal Time

[cycles]

Addtional code length

[instructions]

Count_zeros Signature gen. 1,900 407

Count_zeros Key gen. 3,000 286

Introduce new variable Key gen. ~10 ~10

Rewrite branchless Verify ~10 ~10

Additional rejection Signature gen. 1100 241

Sample twice Key gen. 9,000,000 ~10

Total signature generation:  ~ 330,000 cycles
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CONCLUSION

• First approaches with respect to fault attacks, but rather simple attacks

 need for more sophisticated attacks, comparison with RSA or ECDSA

 analysis of encryption schemes and key exchange

• Implementation complicated: might introduce new ones

 test effectiveness with software

 need careful implementations

THANKS

More research needed!

Active participation for 2nd 

NIST standardization challenge!

17


