Decryption Failure is More Likely After Success
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Example: Learning With Errors (LWE) Problem
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Contribution:

* This talk! *‘

Consider adaptively chosen

queries in theoretical and

practical analysis



Encryption of LWE-based encryption schemes
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| Encryption of LWE-based encryption schemes

Inputs Algorithm
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| Example statement:
Frodo NIST submission, Section 2.2.7

The next lemma states bounds on the size of errors that ean be handled by the decoding algorithm.

Lemma 2.18. Let q = 2P, B < D. Then de(ec(k) +€) = k for any k.e € Z such that 0 < k < 25 and
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Impact of decryption errors

Every decryption error tells us...
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State-of-the-art attacks

Original failure boosting attack
D'Anvers, Guo, Johansson, Nilsson, Vercauteren, Verbauwhede: Decryption failure attacks on IND-CCA
secure lattice-based schemes. PKC 2019

Cost estimation of searching for decryption failure
D'Anvers, Rossie, Virdia: (One) failure is not an option — Bootstrapping the search for failures in lattice-
based encryption schemes. EuroCrypt 2020



| Impact of decryption errors

Every decryption error tells us...
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Every successful decryption tells us...
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‘ Even gather information from successful decryption.




1st contribution:

Refinement of the failure boosting attack:

Consider adaptively collected information
of the secret



ldea of our attack

Recall:

sk =s,e

C; =s'a+e'mod 16
C, = v + Encode(m)

€; = €;(s’, e") randomness used in encryption
queried to decryption oracle

Adversary learns from succesfull decryptions:

- S isnotin blue region
- To trigger decryption error with higher probability,
choose €g in rec region




Efficacy of a query set

E = {El' ., €7, }

Efficacy of E = fraction of the sphere covered by caps
blue area

area of sphere

Intelligent adversary:

Efficqcyﬁ and #E ﬂ,

Cost of adversary:
o Cost of generation efficient query set

o Cost of asking queries: < 2°% (NIST CfS)




Experimental results

Predicted size of a query set of unit efficacy and quantum cost of producing such a query set
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| Analyzing decryption failure probability

[ State-of-the-art failure attacks ]

New attack requires re-evaluation of

parameters

== Smallest parameters

[ Security reductions ]

Passively secure randomized Jd-correct PKE rP

dP = T[rP, G]
Encryp(pk, m) = Encrp (pk, m; G(m))

[FO99]
[HHK17]

Passively secure de-randomized (qc - 8)-correct PKE dP

-+ Independent of attacks

= Leads to larger parameters



Reality check: Frodo

2.2.7 Correctness of IND-CPA PKE

The next lemma states bounds on the size of errors that can be handled by the decoding algorithm.

Lemma 2.18. Let ¢ = 2P, B < D. Then dc(ec(k) +¢€) = k for any k,e € Z such that 0 < k < 28 and
—q/2Pt <e < q/2PF

Proof. This follows directly from the fact that de(ec(k) 4+ €) = |k + €28 /¢] mod 25, ]

2.2.10 Correctness of IND-CCA KEM

The failure probability & of FrodoKEM is the same as the failure probability of the underlying FrodoPKE as
computed in Section 2.2.7. .




2nd contribution:

New correctness definition tailored for de-
randomized encryption schemes:

Consider adaptively asked decryption
queries



Correctness definition

Hofheinz-Hovelmanns-Kiltz 2017: This paper:
Expts R (A): ExptgOhad
1 (pk,sk) «+ Keygen() 1 (pk.sk) < Keygen()
2 m <+ A(sk, pk) 2 m<+ A"P(pk, ")
3 ¢ < Encr(pk,m) 3 ¢+ Encr(pk, m)
4 return [Dec(sk,c) = m] 4 return [Decr(sk,c) = m]

P is &-correct Pis 8(qp, t)-correct

if Pr|[CORS| < &
© Epksk [max Pr Dec(c,sk) # m:c « Enc(m,pk)]| < &
m

& Pr[Dec(c,sk) # m:c « Enc(m, pk), (pk,sk) « Gen] <6
if no depency on m
“One-shot probability‘

if Pr[COR — ad$]| < 8(qp, t)

Hqueries to oracle D

A's computational time




Different correctness definitions
— Example Frodo640

One-shot probability 0 7—144

FO-theorem #hash queries = 128 2-16
t#hash queries - 0

Our def. #decryption queries = 64, 234

d(#decr. queries, time) Time = 2128

Concern: 0 is multiplied with

large terms, leading to

CPA d domized less tight bounds
e | > CCA secure §-correct KEM
& -correct PKE




Experimental results

Predicted size of a query set of unit efficacy and quantum cost of producing such a query set
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