Decryption Failure is More Likely After Success

PQCrypto 2020 September 2020

Nina Bindel John M. Schanck

Encryption of LWE-based encryption schemes

Encryption of LWE-based encryption schemes

Decryption of LWE-based encryption schemes

Example statement: Frodo NIST submission, Section 2.2.7

The next lemma states bounds on the size of errors that can be handled by the decoding algorithm.

Lemma 2.18. Let $q = 2^D$, $B \le D$. Then dc(ec(k) + e) = k for any $k, e \in \mathbb{Z}$ such that $0 \le k < 2^B$ and $-q/2^{B+1} \le e < q/2^{B+1}$.

Impact of decryption errors

Every decryption error tells us...

State-of-the-art attacks

Original failure boosting attack

D'Anvers, Guo, Johansson, Nilsson, Vercauteren, Verbauwhede: Decryption failure attacks on IND-CCA secure lattice-based schemes. PKC 2019

Cost estimation of searching for decryption failure

D'Anvers, Rossie, Virdia: (One) failure is not an option – Bootstrapping the search for failures in latticebased encryption schemes. EuroCrypt 2020

Impact of decryption errors

Every decryption error tells us...

Every successful decryption tells us...

$$-q/2^{B+1} \le E S' + E'' + E' S < q/2^{B+1}$$
.

Even gather information from successful decryption.

1st contribution:

Refinement of the failure boosting attack:

Consider **adaptively** collected information of the secret

Idea of our attack

Recall:

$$sk = s, e$$

 $C_1 = s'a + e' \mod 16$
 $C_2 = v + Encode(m)$

 $\epsilon_i = \epsilon_i(s', e')$ randomness used in encryption queried to decryption oracle

Adversary learns from succesfull decryptions:

- *s* is not in blue region
- To trigger decryption error with higher probability, choose ϵ_8 in red region

Efficacy of a query set

 $E = \{\epsilon_1, \dots, \epsilon_7, \dots\}$ Efficacy of E = fraction of the sphere covered by caps $= \frac{\text{blue area}}{\text{area of sphere}}$ Intelligent adversary: Efficacy i and #E I

Cost of adversary:

- \circ Cost of generation efficient query set
- \circ Cost of asking queries: $\leq 2^{64}$ (NIST CfS)

Experimental results

Predicted size of a query set of unit efficacy and quantum cost of producing such a query set

Analyzing decryption failure probability

Security reductions

Passively secure randomized δ -correct PKE rP

[FO99]
[HHK17]
$$dP = T[rP, G]$$

Encr_{dP}(pk, m) = Encr_{rP}(pk, m; G(m))

Passively secure de-randomized $(\mathbf{q}_{\mathsf{G}} \cdot \boldsymbol{\delta})$ -correct PKE dP

New attack requires re-evaluation of parameters

Independent of attacks

+ Smallest parameters

Leads to larger parameters

Reality check: Frodo

2.2.7 Correctness of IND-CPA PKE

The next lemma states bounds on the size of errors that can be handled by the decoding algorithm.

Lemma 2.18. Let $q = 2^{D}$, $B \leq D$. Then dc(ec(k) + e) = k for any $k, e \in \mathbb{Z}$ such that $0 \leq k < 2^{B}$ and $-q/2^{B+1} \leq e < q/2^{B+1}$.

Proof. This follows directly from the fact that $dc(ec(k) + e) = \lfloor k + e2^B/q \rfloor \mod 2^B$.

2.2.10 Correctness of IND-CCA KEM

The failure probability δ of FrodoKEM is the same as the failure probability of the underlying FrodoPKE as computed in Section 2.2.7.

2nd contribution:

New correctness definition tailored for derandomized encryption schemes:

Consider **adaptively** asked decryption queries

Correctness definition

Hofheinz-Hövelmanns-Kiltz 2017:

 $\operatorname{Expt}_{\mathsf{P}}^{\mathsf{COR}}(\mathcal{A})$:

 $\begin{array}{ccc} 1 & (pk, sk) \leftarrow \mathsf{Keygen}() \\ 2 & \mathsf{m} \leftarrow \mathsf{A}(sk, pk) \end{array}$

3
$$c \leftarrow \mathsf{Encr}(\mathrm{pk}, \mathsf{m})$$

4 return
$$[\mathsf{Dec}(sk, c) = \mathsf{m}]$$

P is
$$\delta$$
-correct
if $\Pr[COR_P^A] \le \delta$
 $\Leftrightarrow E_{pk,sk} \left[\max_m \Pr[Dec(c, sk) \ne m: c \leftarrow Enc(m, pk)] \right] \le \delta$
 $\Leftrightarrow \Pr[Dec(c, sk) \ne m: c \leftarrow Enc(m, pk), (pk, sk) \leftarrow Gen] \le \delta$
if no depency on m
"One-shot probability"

Different correctness definitions — Example Frodo640

One-shot probability δ		2 ⁻¹⁴⁴
FO-theorem #hash queries $\cdot \delta$	#hash queries = 128	2 ⁻¹⁶
Our def. $\delta(\#$ decr. queries, time)	#decryption queries = 64 , Time = 2^{128}	2 ⁻³⁴
Concern:	δ is multiplied with large terms, leading to	
CPA secure de-randomized δ -correct PKE	less tight bounds CCA secure	δ -correct KEM

Experimental results

Predicted size of a query set of unit efficacy and quantum cost of producing such a query set

Summary

- Refinement of failure boosting attack
- New correctness definition tailored for derandomized encryption schemes
- Experimental Results:
 - Do not ask for revision of parameters of NIST candidates
 - Show that one-shot probability is not reliable

Acknowledgments

Special thanks to Kathrin Hövelmanns for insights on the correctness definition, Jan-Pieter D'Anvers for helpful discussions, and Steve Weiss for computer systems support.

ΤΗΔΝΚς

Full paper: IACR eprint 2019/590

