Special Session: Hampering fault attacks against lattice-based
signature schemes— countermeasures and their efficiency

Nina Bindel
Technische Universitat Darmstadt
Germany
nbindel@cdc.tu-darmstadt.de

ABSTRACT

Research on physical attacks on lattice-based cryptography has seen
some progress in recent years and first attacks and countermea-
sures have been described. In this work, we perform an exhaustive
literature review on fault attacks on lattice-based encryption and
signature schemes. Based on this, we provide a complete overview
of suggested countermeasures and analyze which of the proposed
attacks can prevented by respective countermeasures. Moreover,
we show for selected countermeasures how they affect the runtime
of the protected operations.

KEYWORDS
lattice-based cryptography, fault attacks, side channel analysis

ACM Reference format:

Nina Bindel, Juliane Kramer, and Johannes Schreiber. 2017. Special Session:
Hampering fault attacks against lattice-based signature schemes— counter-
measures and their efficiency . In Proceedings of CODES/ISSS °17 Companion,
Seoul, Republic of Korea, October 15-20, 2017, 3 pages.
https://doi.org/10.1145/3125502.3125546

1 INTRODUCTION

Due to their high efficiency and their strong security properties,
lattice-based primitives are a very promising post-quantum can-
didate to replace currently used public key cryptography. While
the security of lattice-based schemes has been deeply analyzed
mathematically, only little effort has been spent on the analysis
with respect to implementation attacks. First results about powerful
attacks exist, but there is no comprehensive work on countermea-
sures that helps software developers of lattice-based primitives to
secure the implementations against physical attacks.

In this work, we provide such an overview for active physical
attacks, i.e., fault attacks. Based on all publications on fault attacks
on lattice-based signature [2, 5, 9] and encryption schemes [8, 10,
11], we provide a complete overview of suggested countermeasures?
(cm) for first-order fault attacks. Thus, we assume that an attacker

To the best of our knowledge, no attacks on lattice-based key exchange protocols
have been published so far.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODES/ISSS ’17 Companion, October 15-20, 2017, Seoul, Republic of Korea

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5185-0/17/10...$15.00
https://doi.org/10.1145/3125502.3125546

Juliane Kramer
Technische Universitiat Darmstadt
Germany
jkraemer@cdc.tu-darmstadt.de

Johannes Schreiber
Technische Universitit Darmstadt
Germany

can only induce a single fault, and he cannot circumvent a cm with
an additional fault. We analyze which fault attacks can be prevented
by the found countermeasures and which signature scheme can be
secured with them. A summary of the proposed countermeasures
and the attacks they can prevent is given in Table 1. Moreover, we
describe for selected countermeasures the impact that they have on
the runtime of the protected operations. To this end we implement
four countermeasures of the lattice-based signature scheme ring-

TESLA [1].

2 PRELIMINARIES

For g € N a prime, we denote by Z, the finite field Z/qZ . Further-
more, we define the rings R = Z[x]/(x" +1) and Rq = Zg[x]/(x" +
1) . For a finite set S, we write s <—¢ S to indicate that an element s
is sampled uniformly at random from S.

For the description of the lattice-based signature schemes GLP [6],
BLISS [3], PassSign [7], and the NTRU-like instantiation of GPV [4],
we refer to the original works or to [2, 5]. We briefly describe the
scheme ring-TESLA [1] since we explain countermeasures for this
scheme in Section 4. The secret key sk is a tuple of polynomials
s, e1, and ey with small coefficients; the public key vk consists of
ai,az <¢ Rq, b1 = a1s + e1 (mod g), and by = azs + ez (mod gq).
The signature of a message y is (z, ¢’) with z = y + sc, y a random
vector, ¢ an encoding polynomial of the hash value ¢’ that depends
on the most significant bits of a1y, azy, and p. Before returning
the signature, rejection sampling is applied. For verification of the
signature (¢, z), the size of z and the equality of ¢’ and the hash of
p and the most significant bits of a;z — by c is checked.

3 OVERVIEW OF COUNTERMEASURES

We provide an exhaustive overview of all countermeasures (cm)
from the literature about fault attacks on lattice-based signature
and encryption schemes and summarize our findings in Table 1. In
the table we consider the following attacks during key generation
(KG), sign (S), and verify (V): (1) Randomization of the secret (KG),
[2, Sec. ITI-A]; (2) Zeroing of secret (KG), [2, Sec. V-A]; (3) Skip
of addition (KG), [2, Sec. IV-A2]; (4) Skip of addition (S), [2, Sec.
IV-B2]; (5) Zeroing of randomness (S), [2, Sec. V-B]; (6) Zeroing
of hash polynomial (V), [2, Sec. V-DJ; (7) Skip of addition (KG), [2,
Sec. IV-A2]; (8) Skip of rejection sampling, [2, Sec. IV-B1]; (9) Skip
of correctness check (V), [2, Sec. IV-C1]; (10) Skip of size check
(V), [2, Sec. IV-C2]; (11) Zeroing of hash value (S), [2, Sec. V-C];
(12) Loop-abort against Fiat-Shamir signatures(S), [5, Sec. 3]; (13)
Loop-abort against Hash-and-Sign signatures (S), [5, Sec. 4].

We emphasize that all countermeasures have to be implemented
carefully to ensure that they work as expected. While this is true

https://doi.org/10.1145/3125502.3125546
https://doi.org/10.1145/3125502.3125546

CODES/ISSS *17 Companion, October 15-20, 2017, Seoul, Republic of Korea

in general, it is especially important for those cms where a con-
straint on the effectiveness is shown in Table 1. We believe that these
constraints are necessary for the respective cm to be effective. For
instance, the cm loop-counter, which we think can be transferred
to several attacks, requires that the vulnerable operation is imple-
mented with a for loop. Regarding the attack skip of addition, this
means that the addition of polynomials has to be processed coeffi-
cient by coefficient, with a for loop indexing the coefficients. We
use the following constraints in the table: (15) attacks prevented
in at least 50% of the times; (16) if addition is implemented as a for
loop; (17) if check is implemented as a for loop; (18) if zeroing fault
is an early abort of a for loop.

sk-correctness: To evaluate the correctness of the secret key dur-
ing key generation is to use correctness checks or comparisons [2].

Countermeasure |Prevented| Schemes vulnerable to attacks Constraints
attacks |GLP BLISS ring- Pass- GPV-
TESLA Sign NTRU
sk-correctness E;; : 4
pk-correctness (3) o O []
dummy-value (1) o O
(3) o O)
@) [J
new-variable Eg; : ° S
(6) o O [J
7) o O []
add-secret- 4) [}
to-random * (5) o o o
* (6) o O o
. (8) @) ©®) (@ (15)
if-true) o o ° (15)
(10) o O (15)
* (3) o O [] (16)
* (4) ® (16)
%* (9) o o [J (17)
% (10) o O (17)
loop-counter * (2) [] (18)
* (5) o o [J (18)
% (6) o o [J (18)
%* (11) (18)
(12) o O [] o
loop-rand. (12) o O [J [
zero-counting * (@) o
* (5) o O [J
* (6) o o []
(12) o O [] [J
* (9) o O []
redund.-comp. % (10) e o
* (6) o O []
verify-in-sign * E;l)3) L PY
* (1) e o (15)
parity-bits %* (2) [} (15)
%* (5) o o [J (15)
* (6) o O [J (15)
error-det.-codes
add.-rej.-sampling | ¥ (8) [(® @ (@
return-comparison| % (9) [o O [J

Table 1: Overview on countermeasures (cm); in column “pre-
vented attacks” % denotes that we find that the respective
cm also prevents the corresponding attack, otherwise cm
was originally proposed; in column “schemes vulnerable to
attacks”, @ denotes that the attack was originally proposed
against the respective scheme

Nina Bindel, Juliane Kramer, and Johannes Schreiber

pk-correctness: To prevent returning a leaking public key, advanced
correctness checks should be implemented. dummy-value: To en-
sure that the correct secret key is used during sign, a “dummy”
value is computed and multiplied with the values that should be
returned. If no fault occurs, the dummy value is equal to one, oth-
erwise it randomizes the signature. In [2] this is described for the
GLP scheme A similar idea for a different scheme is also mentioned
in [9]. new-variable: A way to circumvent skipping faults address-
ing the addition or multiplication is to define a new variable to save
the resulting sum [2]. add-secret-to-random: A similar method con-
sists in adding secret information to a random value instead of
the other way around [2]. We use the name add-secret-to-random
also to denote similar cms for multiplication . if-true: To prevent
skipping attacks such as skipping the rejection sampling condition,
an if-condition should be implemented such that a value is returned
if the if-condition holds true.This cm prevents skipping attacks of
this kind only in roughly 50% of the cases [2]. loop-counter: In [5]
it is proposed to introduce a second loop counter and compare
its value with the number of intended loops in order to prevent
early abortion of a for loop. loop-randomization: To protect the
sampling/computation of polynomials against early abortion faults
to receive a low-degree polynomial, randomization of the order of
the coefficients can be implemented [5]. zero-counting: To check
the degree of the computed/sampled polynomial, it can be checked
that not too many consecutive coefficients are equal to zero without
changing the distribution notably [2, 5]. redundant-computations:
In [8], a redundant, rather inefficient computation is sketched. Fur-
thermore, they describe a smart redundant computation, similarly
proposed in [9]: Due to the cyclic properties of NTRU-lattices, a
second signature is computed on cyclic shifts of values and shifted
back before compared with the first signature. We find that this cm
can not be applied for ideal-lattice-based Fiat-Shamir signatures.
verify-in-sign: Espitau et al. [5] propose to run the verification
algorithm before returning the signature as a cm in GPV-NTRU,
since by construction of the NTRU-GPV scheme and the fault at-
tack, faulted signatures are not valid with very high probability.
parity-bits: To detect faults during decryption, parity bits can be
used [8] . error-det.-codes: In [10], error-detecting codes which tar-
get algebraic properties of the decryption process are suggested
as cm. By construction of the scheme, for for several polynomials
that are used during decrypt, the sum of their coefficients is equal
modulo a system parameter. This equality is invalidated with high
probability by a fault attack and can therefore be checked as a cm.
This cm might hamper attacks on signature schemes as well, but to
the best of our knowledge, it can not prevent the attacks that we
already know. We present to more countermeasures in this work
that we describe in Section 4: additional-rejection-sampling and

return—comlgarison.

4 THE EFFICIENCY OF COUNTERMEASURES

We implemented the countermeasure (cm) new-variable to pre-
vent skipping the addition of the error during the key generation
.In Listing 1, we show the original, vulnerable key generation al-
gorithm of ring-TESLA next to our implemented cm. To protect
against zeroing attacks against the randomness poly vec_y in
the signature generation of ring-TESLA, we implement the cm

G o W

0 u U W e

Hampering fault attacks against LBSS

CODES/ISSS ’17 Companion, October 15-20, 2017, Seoul, Republic of Korea

#with CM
poly_mul_fixed(poly AlS,poly_S,poly_al);
poly_add(poly_T1,poly_AlS,poly_El);
poly_mul_fixed(poly_T2,poly_S,poly_a2); poly_mul_fixed (poly_A2S,poly_S,poly_a2);
poly_add (poly_T2,poly_T2,poly_E2); poly_add(poly_T2,poly_A2S,poly_E2);

[...] [...]

compress_pk (pk, poly_T1,poly_T2); compress_pk (pk,poly_T1,poly_T2);

4 orignal
poly_mul_fixed(poly_T1,poly_S,poly_al);
poly_add (poly_T1,poly_T1,poly El);

(

Listing 1: Parts of the key generation algorithm of ring-
TESLA with and without countermeasures against skipping
the addition of the error polynomial

[...] int count_zeroes (poly p) {
poly vec_y; int zeroes = 0;
sample_y (vec_y) ; for (int i = 0; i < PARAM_N; i++) {
if (count_zeroes (vec_y) > 8){ if (pl[i] == 0.0) {
// restart in Line 1 zeroes++; }

} }
[...] return zeroes;

}

Listing 2: Sampling during signature generation with check
if zeroing fault was introduced and implementation of
count_zeros ()

static void compress_sig(unsigned char ssm, static double fmodb_u(double x)
unsigned char sc, double vec_z[PARAM_N])
{ int i,k; { int modulus = PARAM_B - PARAM_U;

int ptr =0; if (x < -modulus)

int32_t t=0; { return x + modulus; }

else if (x > modulus)

//store the hash value { return x - modulus; }

for (i=0; i<32; i++) else

{ sm[ptr++] =c[i]; } { return x; }

for (1i=0; i < PARAM_N; i++) }
{ t = (int32_t) fmodb_u(vec_z[i]);
for (k=0;k<4;k++)

sm[ptr++] = ((£>>(8%(k))) & Oxff);

}

Listing 3: Changed subroutines compress_sig() and
implementation of fmodb_u ()

zero-counting, see Listing 2. Because vec_y has 512 integer co-
efficients, sampled uniformly random over [-2097151, 2097151],
the probability of a polynomial having more than eight zero coef-
ficients is less than 27128, Hence, we consider the change in the
probability distribution to be negligible. We implement the cm
additional-rejection-sampling within the compression of the signa-
ture. The function fmodb_u () was added to the original code. We
show the modification of compress_sig () and implementation
of fmodb_u () in Listing 3. During the verification algorithm of
ring-TESLA, the input value c_sig and the computed hash poly-
nomial ¢ are compared. If they are equal, memcmp () returns 0,
otherwise it returns a positive integer (which results in rejected the
signature). An attacker who wants his victim to accept an invalid
signature, must force the verification algorithm to return 0, which
signifies a valid signature. This can be achieved by a skipping attack.
Considering only first-order attacks, we can prevent the skipping
attack by implementing the cm return-comparison as in Listing 4.
The function still returns 0 if the signature is valid and, by definition
of memcmp (), a nonzero value otherwise (albeit not -1).

[...]
«mlen = smlen-CRYPTO_BYTES;
memcpy (m, sm, *mlen);
return memcmp (c,c_sig,32);

Listing 4: Implementation of return-comparison

Algorithm KG S \%

CM new-var. zero-count. add.-rej.-sampl. return-comp.
Without compiler optimization

w/ CMs 58345806 1768674 1743670 467762
w/o CMs 55308534 1735398 467321
With compiler optimization

w/ CM 35247385 71354 71075 73739
w/o CMs 33429812 69843 71299

Table 2: Comparison of benchmarks of the ring-TESLA im-
plementation with and without implemented countermea-
sures and with and without compiler optimization

We benchmarked the implementations of ring-TESLA with and
without countermeasures. The benchmarks were recorded on a
4.0 GHz Intel Core i7-6700k. For compilation we used GCC 7.1.0.
The benchmarks are given in clock cycles and are averaged over
2,000 runs for the key generation and 20,000 runs for signature
generation and verification. Since compiler optimizations might
remove some of the countermeasures, we report two benchmarks -
with and without the optimization ~Ofast - in Table 2.

ACKNOWLEDGMENTS

This work has been supported by the the German Research Foun-
dation (DFG) as part of project P1 within the CRC 1119 CROSSING.

REFERENCES

[1] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Kridmer, and Gior-
gia Azzurra Marson. 2016. An Efficient Lattice-Based Signature Scheme with
Provably Secure Instantiation. In AFRICACRYPT 2016. Springer.

Nina Bindel, Johannes A. Buchmann, and Juliane Kramer. 2016. Lattice-Based

Signature Schemes and Their Sensitivity to Fault Attacks. In FDTC 2016. IEEE

Computer Society.

[3] Léo Ducas, Alain Durmus, Tancréde Lepoint, and Vadim Lyubashevsky. 2013.
Lattice Signatures and Bimodal Gaussians. In CRYPTO 2013, Springer (Ed.).

[4] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. 2014. Efficient Identity-
Based Encryption over NTRU Lattices. In ASIACRYPT 2014. Springer.

[5] Thomas Espitau, Pierre-Alain Fouque, Benoit Gérard, and Mehdi Tibouchi. 2016.
Loop abort Faults on Lattice-Based Fiat-Shamir & Hash’n Sign signatures. IACR
Cryptology ePrint Archive (2016).

[6] Tim Giineysu, Vadim Lyubashevsky, and Thomas Péppelmann. 2012. Practical
Lattice-Based Cryptography: A Signature Scheme for Embedded Systems. In
CHES 2012, Springer (Ed.).

[7] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William
Whyte. 2014. Practical Signatures from the Partial Fourier Recovery Problem. In
ACNS 2014. Springer.

[8] Abdel Alim Kamal and Amr M. Youssef. 2011. Fault Analysis of the NTRUEncrypt
Cryptosystem. IEICE Transactions (2011).

[9] Abdel Alim Kamal and Amr M. Youssef. 2012. Fault analysis of the NTRUSign

digital signature scheme. Cryptography and Communications (2012).

Abdel Alim Kamal and Amr M. Youssef. 2013. Strengthening hardware implemen-

tations of NTRUEncrypt against fault analysis attacks. Journal of Cryptographic

Engineering 3, 4 (01 Nov 2013), 227-240.

Tobias Oder, Tobias Schneider, Thomas Poppelmann, and Tim Giineysu.

2016. Practical CCA2-Secure and Masked Ring-LWE Implementation. IACR

Cryptology ePrint Archive (2016).

[2

—
_

