LATTICE-BASED SIGNATURE SCHEMES AND THEIR SENSITIVITY TO FAULT ATTACKS

FDTC 2016 08/16/2016 <u>Nina Bindel</u> Johannes Buchmann Juliane Krämer

TU Darmstadt

SHOR'S ALGORITHM 1994

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer^{*}

Peter W. Shor[†]

Abstract

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms, Church's thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10

SHOR'S ALGORITHM 1994

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer^{*}

Peter W. Shor[†]

A digital computer is g device; that is, it is believ an increase in computation true when quantum mech

factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms, Church's thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10

QUANTUM COMPUTER REALISTIC?

- John Martinis (UCSB & Google Quantum Labs): until 2019 universal quantum computer
- Prediction by EU-commision:

until 2035 universal quantum computer

BETTER SAFE THAN SORRY

- NSA, 2015 : announcement about transition from classical to quantum-resistant crypto
- NIST, 2016: announcement to start standardization competition

POST-QUANTUM CANDIDATES

Quantum key distribution

- Multivariate Crypto
- Code-based Crypto
- Hash-based Crypto
- Lattice-based Crypto

Side-channel analysis

Fault analysis

CONTRIBUTION

- Analysis of LBSS: BLISS, GLP, ring-TESLA
- 1st order attacks
- Randomization, skipping, zeroing
- all-in-all 15 different attacks
- to 9 at least one scheme vulnerable
- Propose countermeasures

VULNERABILITIES OF LBSS

Fault Attack	Changed Value or Op.	Algorithm	GLP	BLISS	ring-TESLA
Randomization	Secret	Sign			\bigcirc
Skipping	Addition	Key Gen			
	Addition	Sign		0	0
	Correctness check	Verify			
	Size check	Verify			0
Zeroing	Secret	Key Gen		-	0
	Randomness	Sign			
	Hash polynomial	Sign			

VULNERABILITIES OF LBSS

Fault Attack	Changed Value or Op.	Algorithm	GLP	BLISS	ring-TESLA
Randomization	Secret	Sign			0
Skipping	Addition	Key Gen			
	Addition	Sign		0	0
	Correctness check	Verify			
	Size check	Verify			\bigcirc
Zeroing	Secret	Key Gen		-	0
	Randomness	Sign			
	Hash polynomial	Sign			

NOTATION

- $R_q = \mathbb{Z}_q[x]/(x^n + 1)$, i.e., polys of degree n-1 with coefficients in $\left|-\frac{q}{2}, \frac{q}{2}\right|$
- Security assumption: Learning with errors (R-LWE)

Short integer solution (R-SIS)

LATTICE-BASED HARDNESS ASSUMPTION

 $\mathbf{a} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod \mathbf{q}$

a
$$\leftarrow R_q$$

s_i, e_i $\leftarrow D_\sigma$ or "small"

Secret key Public key

IDEA RANDOMIZATION ATTACK

• Based on Bao et al. [BDHJNN96]

Fault injection: Change coefficient of original secret

Software computation:

Find index and value of faulted secret

DESCRIPTION KEY GENERATION OF GLP SCHEME

Key Generation	1. s, e \leftarrow poly with coeffs $\in \{-1,0,1\}$ 2. a $\underset{\$}{\leftarrow} \mathbb{Z}_q[x]/(x^n + 1)$
Input: 1 ^ĸ Output: pk, sk	3. $b \leftarrow as + e \mod q$ 4. $sk = s, pk = (a, b)$ 5. Return (pk, sk)

DESCRIPTION OF GLP SCHEME

Signature Generation Input: $sk = (s, e), \mu$ Output: $\sigma = (z_1, z_2, c)$	1. $y_1, y_2 \leftarrow \$$ 2. $c \leftarrow H(ay_1 + y_2, \mu)$ 3. $z_1 \leftarrow y_1 + sc$ 4. $z_2 \leftarrow y_2 + ec$ 5. Return (z_1, z_2, c) with some probability
Verification Input: σ , μ , pk = (a, b) Output: {0,1}	 Check size of z₁, z₂ Check c = H(az₁ + z₂ - bc, μ) If both checks okay: accept Otherwise: reject

FAULTED SIGNATURE

Signature Generation1. $y_1, y_2 \leftarrow \$$ 1. $y_1, y_2 \leftarrow \$$ 2. $c \leftarrow H(ay_1 + y_2, \mu)$ 2. $c \leftarrow H(ay_1 + y_2, \mu)$ 3. $z_1 \leftarrow y_1 + s'c$ 3. $z_2 \leftarrow y_2 + ec$ 4. $z_2 \leftarrow y_2 + ec$ 5. Return (z_1, z_2, c) with some probability

During verification check $c = H(az_1 + z_2 - bc, \mu)$

Instead check
$$c = H(az_1 + z_2 - bc - a\alpha x^i c, \mu)$$
 for values $\alpha \in \{-2, -1, 0, 1, 2\}$ and $i \in \{0, ..., n - 1\}$

FINDING INDEX AND VALUE

For which values $\alpha \in \{-2, -1, 0, 1, 2\}$ and $i \in \{0, ..., n - 1\}$ does the equation ...

$$c = H(a\mathbf{z}_1 + \mathbf{z}_2 - bc - a\alpha x^i c, \mu)$$

= $H(a(y_1 + \mathbf{s'}c) + y_2 + ec - (as + e)c - a\alpha x^i c, \mu)$
= $H(ay_1 + y_2 + a(\mathbf{s'} - \mathbf{s} - \alpha x^i)c, \mu)$

... hold?

DETERMINATION OF COEFFICIENT

NUMBER OF NEEDED FAULTS

Number of secret coefficients: n = 512 \rightarrow plain expected number of faults: $\frac{9}{2} \cdot 512 \approx 2304$

Reduce number of faults:

Hybrid approach of fault attacks and mathematical crypanalysis of LWE

Enough to determine **118** of the secret coefficients

$$\rightarrow$$
 expected number of faults: $\frac{9}{2} \cdot 118 \approx 531$

HYBRID APPROACH

- LWE gets easier when part of the secret known
- Software Computation time: 1 day
- Lattice cryptanalysis [LP10]: 118 coefficients necessary
- \rightarrow Coefficients by fault attacks: 118
- \rightarrow Coefficients by lattice-based cryptanalysis: 396

GENERALIZATIONS

- change more than one coefficient per fault
 - decreases number of expected faults
- increases run time to find coefficients
- apply similar approach to BLISS
 coeffs chosen in small interval
- not feasible for ring-TESLA
- coeffs chosen Gaussian distributed

→ One countermeasure: use LWE with Gaussian distribution

COUNTERMEASURE

1. $y_1, y_2 \leftarrow \$$ 2. $c \leftarrow H(ay_1 + y_2, \mu)$ 3. $b' = as' + e \mod q$ 4. $z_1 \leftarrow a^{-1}(b - b')c + s'c + y_1$ 5. $z_2 \leftarrow y_2 + ec$ 6. Return (z_1, z_2, c)

Disadvantage:

- Additional computation: a⁻¹, b'
- Additional input: b

$$z_1 = a^{-1}(b - b')c + s'c + y_1$$

= $a^{-1}(as + e - as' - e) + s'c + y_1$
= $a^{-1}a(s - s')c + s'c + y_1$
= $sc + y_1$

FUTURE WORK

• implement and run attack in praxis

• implement countermeasures and evaluate their effectiveness

