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A bstract

A digital computer is generally believed to be an efficient universal computing
deviee; that is, it i believed able to simulate any physical computing deviee with
an increase in computation time by at most a polynomial factor. This may not be
true when guantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been nsed as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical guantum computer. These algorithms take
a number of steps polynomial in the mput size, ep.. the number of digits of the
integer to be factored.
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QUANTUM COMPUTER REALISTIC?

John Martinis (UCSB & Google Quantum Labs):

until 2019 universal guantum computer
Prediction by EU-commision:

until 2035 universal guantum computer



BETTER SAFE THAN SORRY

NSA, 2015 : announcement about transition from classical to
guantum-resistant crypto

NIST, 2016: announcement to start standardization competition



POST-QUANTUM CANDIDATES

Quantum key distribution

Multivariate Crypto
Code-based Crypto

Hash-based Crypto
P Side-channel analysis

Lattice-based Crypto Fault analysis



CONTRIBUTION

Analysis of LBSS: BLISS, GLP, ring-TESLA

1st order attacks
Randomization, skipping, zeroing

all-in-all 15 different attacks
to 9 at least one scheme vulnerable

Propose countermeasures
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NOTATION

Rq = Zq[X]/(Xn + 1), i.e., polys of degree n-1 with coefficients in [—%,%]

Security assumption:  Learning with errors (R-LWE)

Short integer solution (R-SIS)
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LATTICE-BASED HARDNESS

ASSUMPTION
R-LWE
el Secret key
Public key

a-s+e=bmodqg

S
a+— Ry

S €= D, or “small”



IDEA RANDOMIZATION ATTACK

Based on Bao et al. [BDHINN96]

Fault injection: Software computation:

Change coefficient of original Find index and value of faulted
secret secret



DESCRIPTION KEY GENERATION OF
GLP SCHEME

1. s, e < poly with coeffs € {—1,0,1}
2. a<—Z qXI/(x" + 1)

3. b<as+emodq

1K

Input: 1 4. sk =s,pk =(ab)

Output: pk, sk 5. Return (pk, sk)

Key Generation



DESCRIPTION OF GLP SCHEME

Signature Generation

Input: sk = (s,e),u

Output: 0 = (24,25, C)

Verification

Input: o, u, pk = (a,b)
Output: {0,1}

vk wihe

B w N e

VY2 < $

¢ < H(ays +yz, 1)

Z1 < yq1 + SC

Zy < Vo +ec

Return (z1, Z,, ) with some probability

Check size of z4, z,

Check ¢ = H(az; + z, — bc, )
If both checks okay: accept
Otherwise: reject
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STRUCTURE ATTACK

Assumption 1

1st Insert fault: change one coeff. s; € {—1,0,1} to

si € {—1,0,1} Assumption 2:

coeffs. saved in 2 bit

2nd Software computation: find index i and
determine value of s;

1st find s; — s;’ at index i

2nd compute s;
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FAULTED SIGNATURE

Signature Generation Vi,V < $

1
2. c< H(ys +y2 1)
3. z;¢<y;+s'c
Input: sk = (s,e),u 4
5

Zy < Yo + €C

Output: 0 = (Z4, 25, C) Return (z4, z;, ¢) with some probability

During verification check ¢ = H(az; + z, — bc, p)

Instead check ¢ = H(az; + z, — bc — aax'c, p) for values
a €{-2,—1,0,1,2}andi € {0, ...,n — 1}
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FINDING INDEX AND VALUE

For which values a € {—2,—1,0,1,2} and i € {0, ...,n — 1} does the
equation ...

C = H(azl + 2z, — bc — aax'c, u)
— H(a(yl +5s'c) +y, + ec — (as + e)c — aax!c, u)
= H(ayl +vy, +a(s’'—s — axl)c, u)

... hold?



DETERMINATION OF COEFFICIENT

Sj 1 -1
Si’ -1 1
o = S;-Sj’ 2 -2

Probability to

uniquely determine
coeff.: 2/9

————) O O O
— 2| P O
— L O
— O
e — N



NUMBER OF NEEDED FAULTS

Number of secret coefficients: n =512
- plain expected number of faults: %- 512 = 2304

Reduce number of faults:
Hybrid approach of fault attacks and mathematical crypanalysis of LWE

Enough to determine 118 of the secret coefficients

- expected number of faults: 3- 118 = 531
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HYBRID APPROACH

LWE gets easier when part of the secret known

Software Computation time: 1 day
Lattice cryptanalysis [LP10]: 118 coefficients necessary

Coefficients by fault attacks: 118
Coefficients by lattice-based cryptanalysis: 396
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GENERALIZATIONS

change more than one coefficient per fault
decreases number of expected faults
increases run time to find coefficients

apply similar approach to BLISS

coeffs chosen in small interval
9 One countermeasure: use

not feasible for ring-TESLA LWE with Gaussian distribution
coeffs chosen Gaussian distributed

21



COUNTERMEASURE

yu Y2 < $ Disadvantage:
. ¢ < H(ayy +yz, 1) Additional computation: a~ 1, b’

1

2

3. b'=as’"+emodq N .

4. 7, «al(b—b)c+scty, Additional input: b
5
6

Zo < Y, T €C
. Return (z4, 2z, C)

z,=a '(b—b)c+s'c+y,
=al(as+e —as'’—e)+s'c+y;
=ata(s—s)c+s'c+y;
= SC+YVq
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FUTURE WORK

implement and run attack in praxis

implement countermeasures and evaluate their effectiveness
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