
International Journal of Information Security (2018) 17:701–718
https://doi.org/10.1007/s10207-017-0397-6

REGULAR CONTRIBUT ION

Comparing apples with apples: performance analysis of lattice-based
authenticated key exchange protocols

Nina Bindel1 · Johannes Buchmann1 · Susanne Rieß1

Published online: 9 December 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract
In view of the expected cryptanalysis (of both classical and quantum adversaries), it is important to find alternatives for
currently used cryptographic primitives. In the past years, several authenticated key exchange protocols (AKE) that base
their security on presumably quantum hard problems, such as lattice-based AKEs, were proposed. Since very different
proposals for generic AKEs as well as direct AKEs, i.e., protocols directly based on lattice-based problems without additional
authentication, exist, the performance of lattice-based AKEs is not evaluated and compared thoroughly. In particular, it is
an open question whether the direct constructions are more efficient than generic approaches as it is often the case for other
primitives. In this paper, we fill this gap. We compare existing lattice-based authenticated key exchange protocols, generic
and direct. Therefore, we first find the most efficient suitable primitives to instantiate the generic protocols. Afterward, we
choose parameters for each AKE yielding approximately 100 or 192 bits of security. We implement all protocols using the
same libraries and compare the resulting performance. We find that our instantiation of the AKE by Peikert (PQCrypto, 2014)
is the most efficient lattice-based AKE. Particularly, it is faster than the direct AKE by Zhang et al. (EUROCRYPT, 2015).

Keywords Lattice-based cryptography · Key exchange · Authenticated key exchange · Post-quantum cryptography

1 Introduction

In recent years, post-quantum cryptography, i.e., crypto-
graphic primitives that are presumably secure against quan-
tum algorithms, became a very active field of research. In
particular, since the US-American National Security Agency
(NSA) and the National Institute of Standards and Technol-
ogy (NIST)1 revealed their plans concerning post-quantum
cryptography, the research on post-quantum cryptography
got additional boost. Due to its good efficiency and high vari-
ety, lattice-based cryptography is one of the best candidates
as a post-quantum alternative for currently used public key
cryptography.

During the transition from classical to post-quantum cryp-
tography, (authenticated) key exchange protocols are one of

1 In 2015, the NSA announced to start changing from classical to post-
quantum cryptography [35]. In 2016, NIST started its preparations for
its upcoming post-quantum standardization challenge [34].

B Nina Bindel
nbindel@cdc.informatik.tu-darmstadt.de

1 Department of Computer Science, Technische Universität
Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany

the first primitives that will be substituted for classical proto-
cols. However, currently it is not clear which of the proposed
lattice-based key exchange protocols is the most efficient
one: Different generic constructions [24,37] exist, but to our
knowledge those schemes were not instantiated, evaluated,
and compared with each other until now. In particular, it is
unclear how instantiations of generic constructions compare
to direct lattice-based authenticated key exchange protocols
such as [41].

In this paper, we close this gap. We instantiate the
generic AKEs, implement the resulting constructions and the
directly constructed AKEs in C++ using the same libraries,
and choose parameters to achieve the same security level.
Afterward, we compare their efficiency by comparing their
running times and space, i.e., key sizes and bits of com-
munication. We consider the following AKEs: the generic
AKE by Fujioka et al. [24,25] (FSXY), the generic AKE by
Peikert [37], and the direct one-pass and two-pass AKEs by
Zhang et al. [41] (ZZDSD).2

To this end, we proceed as follows:

2 Wedonot consider theAKEproposed in [17] since the authors already
instantiate their protocol with NTRU-based primitives and compare it
to ZZDSD.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-017-0397-6&domain=pdf
http://orcid.org/0000-0001-6677-2474

702 N. Bindel et al.

– We first choose themost efficient lattice-based primitives
to instantiate the generic AKEs FSXY and the protocol
by Peikert. This means essentially to choose the most
efficient lattice-based key encapsulation mechanisms
(KEM). Therefore, we construct KEMs corresponding
to the following (unauthenticated) key exchange proto-
cols (KEX): the protocol by Ding et al. [20] (DXL),
by Bos et al. [10] (BCNS), and by Alkim et al. [4]
(NewHope). The KEM by Peikert [37] is the only lattice-
based KEM so far. Note that it is basically the same
as the KEM constructed from [10]. Namely, BCNS is
essentially an instantiation of Peikert’s KEM. Further-
more, we also consider the public key encryption scheme
(PKE) by Lyubashevsky et al. [32,33] (LPR) since it was
suggested as an instantiation for the FSXY protocol by
Fujioka et al. [24].

– We choose parameters for security levels of approxi-
mately 100 and 192 bit for the considered KEMs. Since
we do not always reach the exact bit security of 100 and
192 bit, we also refer to them as low and high bit-security
level. We implement each of the KEMs in C++ using the
same libraries and measure the running times.

– Comparing the resulting running times and space,we find
that the NewHope-based KEM is currently the most effi-
cient one. Since the protocol NewHope was constructed
to bemore efficient than its predecessors, this is not overly
surprising. However, our analysis explains whether the
speedup results from the new design or implementation
methods. We use the (IND-CPA secure) KEM based on
NewHope to instantiate Peikert’s protocol. The FSXY
protocol uses one IND-CPA and one IND-CCA secure
KEM. Therefore, using the transform by Fujisaki and
Okamoto [26], we construct an IND-CCA secure KEM
based on NewHope to instantiate FSXY.

– Finally, we choose parameters for the direct AKEs by
Zhang et al. [41], implement the two AKEs in the same
way as before, measure the running times, and compare
those with the results of our instantiations of the generic
AKEs.

We find that our instantiation of Peikert’s AKE protocol
is most efficient with respect to running times and space.
Particularly, it is faster than the direct two-pass AKE by
Zhang et al. [41]. We give detailed analyses of all measured
running times in Sects. 6 and 8 and summarize our results in
Table 9, Sect. 9.Wealsoname the respective security assump-
tions and the security models the protocols are proved in, but
we do not consider those any further in our comparison. All
our software is in public domain.3

3 Our software is available onhttps://www.cdc.informatik.tu-darmstadt
.de/cdc/personen/nina-bindel.

1.1 Organization

After introducing notations in Sect. 2, we explain (authenti-
cated) key exchange protocols in general and summarize the
different building blocks and possible instantiations of the
constructions in Sect. 3. We describe the constructed KEMs
in detail in Sect. 4. In Sect. 5, we explain how we choose
parameters for each of the considered KEMs. Our imple-
mentations and experimental results of the KEMs are given
in Sect. 6. Afterward, we describe all considered AKEs in
Sect. 7, i.e., we describe our instantiations of the generic
AKEs and the one-pass and two-pass ZZDSD. In Sect. 8,
we give the parameter sets of the ZZDSD protocols and our
performance results of all AKEs. Finally, we summarize our
analyses in Sect. 9.

2 Preliminaries

In this section, we describe notations, hardness assumptions,
and cryptographic primitives used later on.

2.1 Notations

We define κ to be the security parameter. Let n = 2k ∈
N for some k ∈ N and let q ∈ N be a prime such that
q = 1 (mod 2n) if not stated otherwise.We denote the finite
field Z/qZ by Zq , and we identify an element in Zq with its
representative in

[− ⌊ q
2

⌋
,
⌊ q
2

⌋] ∩Z (denoted by (mod q)).
We define R = Z[x]/〈xn + 1〉 and Rq = Zq [x]/〈xn + 1〉.
Let R be a ring, then R× denotes the set of units in R.

Furthermore, we denote all polynomials by lower case
letters (e.g., p), all column vectors by bold lower case letters
(e.g., v), and all matrices by bold upper case letters (e.g.,M).
We write MT as the transpose of the matrix M. Let p ∈ Rq

be a polynomial. Then, p ∈ Z
n
q denotes its coefficient vector.

When speaking of the length of vector p ∈ R
n , we mean the

Euclidean norm ‖p‖2, also denoted by ||p||. All logarithms
in this paper are in base 2. For x ∈ R, we denote by �x�
the rounding operator such that �x� = �x + 0.5	. We refer
to [38] for an introduction to (ideal) lattices.

Let M be a finite set. With r ←$ M , we denote that
an element r is drawn uniformly at random from M . With
r ← χ , we denote that an element r is drawn according to the
distribution χ . We denote the discrete Gaussian distribution
with standard deviation σ by Dσ . Let v ∈ Z

n . We write
v ← Dn

σ to denote that each coordinate of v is sampled from
Dσ . Similarly, a ← Dn

σ means that each coefficient of a
polynomial a is sampled from Dσ .

2.2 Lattice-based hardness assumptions

All key exchange protocols considered in this paper base their
security on the (ring) decisional learning with errors problem

123

https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel
https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel

Performance analysis of lattice-based authenticated key exchange protocols 703

(R-LWE) or the (ring) short integer solution problem (R-SIS).
In the following, we define first the R-LWE distribution and
afterward the R-LWE problem.

Definition 1 (R-LWE Distribution) Let n and q ≥ 2 be non-
negative integers, s ∈ Rq , and χ be a distribution over R.
The R-LWE distribution is denoted byDs,χ and outputs pairs
(a, b = 〈a, s〉+e) ∈ Rq ×Rq , where a ←$ Rq and e ← χ .

Definition 2 (R-LWE Problem) Let n and q ≥ 2 be nonneg-
ative integers, χ be a distribution overR, and s ← χ . Given
m samples (a0, b0), . . . , (am−1, bm−1) ∈ Rq ×Rq , the deci-
sional learning with errors problem over rings R-LWEn,m,q,χ

is to decide whether (ai , bi) is chosen with the R-LWE distri-
bution or uniformly random inRq×Rq for i = 0, . . . ,m−1.

We write R-LWEn,m,q,σ if the distribution χ is the discrete
Gaussian distribution with standard deviation σ and mean
zero. Brakerski et al. [11] prove that using pairs (a, b =
as + te (mod q)) with t ∈ Z

×, instead of (a, b = as +
e (mod q)), does not weaken the hardness of R-LWE.

One of the key exchange protocols considered in this paper
uses a cryptographic primitive with security based on the
R-SIS problem defined as follows.

Definition 3 (R-SISn,m,q,β Problem)Givena0, . . . , am−1 ←$

Rq , find s0, . . . , sm−1 ∈ R such that
∑m−1

i=0 ai si = 0 (mod
q) and 0 < ||s|| ≤ β for β ∈ R>0.

We refer to [31,38] for further details on the relations between
different variants of R-SIS and R-LWE and respective reduc-
tions to lattice problems.

2.3 Cryptographic primitives

In the following, we define cryptographic primitives used in
the key exchange protocols considered in this work. We do
not define the primitives hash function, message authentica-
tion code (MAC), pseudorandom functions (PRF), and key
derivation function (KDF), but refer to [24,29] for a detailed
explanation.

A public key encryption scheme (PKE) E is defined via
the following three probabilistic polynomial-time algorithms
E = (E .Gen, E .Enc, E .Dec) defined over the message space
M and the cipher text space C :

E .Gen(1κ) → (sk,pk),
E .Enc(m,pk) → c ∈ C,

E .Dec(c, sk) → m ∈ M or a decryption failure ⊥ .

A key encapsulation mechanism (KEM) K is defined via
the three probabilistic polynomial-time algorithms K =
(K.Gen,K.Encap,K.Decap) defined over the cipher text

space C , the message space M, and the key space K as
follows:

K.Gen(1κ) → (dk, ek),
K.Encap(ek) → (c, k) ∈ C × K ,

K.Decap(c,dk) → k ∈ K or failure ⊥ .

An IND-CPAsecureKEMcanbeobtained froman IND-CPA
secure PKE and vice versa by taking K = M. Therefore,
we write (sk,pk) instead of (dk, ek) and instantiate a KEM
with a PKEin, e.g., Sect. 7. The cipher text c and the key
k (c, k) ← K.Encap(ek) correspond to a randomly chosen
message m and the cipher text output c ← E .Enc(m,pk) of
the encryption algorithm. Moreover, k ← K.Decap(c,dk)
corresponds to m ← E .Dec(c, sk), i.e., the key of the KEM
is derived as a randomly chosen message of the PKE.

A signature scheme Σ = (Σ.Gen,Σ.Sign,Σ.Ver) is
defined via the following three algorithms over the message
space M:

Σ.Gen(1κ) → (sk,pk),
Σ.Sign(sk,m) → σ,

Σ.Ver(pk,m, σ) → {1, 0};

accepting σ for m corresponds to 1, rejecting to 0.

3 Overview of authenticated key exchange
protocols

A key exchange (KEX) is a cryptographic primitive to derive
a shared secret key via a public network communication
between a number of parties that do not share any secret infor-
mation before [29]. We describe a key exchange protocol
via the following algorithms: initiation, response, and fin-
ish. During the initiation, the sender computes an ephemeral
public–secret keypair and sends the public key to the receiver.
During the response, the receiver also computes a public–
secret key pair and the shared secret key, and sends the
public key (and eventually some additional information) to
the sender. During the finish, the sender computes the shared
secret key.

AKEX that also authenticates the identities of the involved
parties is called authenticated key exchange protocol (AKE).
More formally, in an AKE protocol each party has a static
public–secret key pair where the static public key is certified
with the party’s identity. When running the protocol, each
party generates an ephemeral secret key and, depending on
that, a corresponding ephemeral public key. The public key
is sent to the other parties. Each invocation of the protocol
is called session and identified by a session identity denoted
by sid. The session identity sid usually consists of public
information such as the identities of the involved parties and

123

704 N. Bindel et al.

public keys. By IS and IR , we denote the identities of the
sender and the receiver, respectively.

An AKE protocol is said to have perfect forward secrecy
(PFS) if a compromise of its static keys does not lead to
a compromise of previously established and deleted session
keys. A protocol is said to have weak perfect forward secrecy
(wPFS) if a compromise of its static keys does not lead to
a compromise of previously established and deleted session
keys of all sessions where the adversary did not interfere
actively [30]. We describe an authenticated key exchange
protocol via the following algorithms: (static) key genera-
tion, initiation, response, and finish (possibly for both, the
sender and the receiver). During the (static) key generation,
the long-term keys of sender and receiver are computed.
During the initiation, the sender computes an ephemeral
public–secret keypair and sends the public key to the receiver.
During the response, the receiver also computes a public–
secret key pair and sends the public key (and eventually
some additional information) to the sender. During the fin-
ish of the sender, the sender computes the shared secret key.
During the finish of the receiver, the receiver computes the
shared secret key. Depending on the protocol, sometimes the
receiver computes the shared secret key during the response,
and hence, the finish of the receiver is not necessary anymore,
e.g., [41].

In lattice-based authenticated key exchange protocols,
generic constructions as well as direct constructions exist.
Generic constructions such as [24,37] prove their secu-
rity based on different cryptographic primitives such as
signature schemes, encryptions scheme, key encapsulation
mechanisms, or hash functions in general. Each of the
primitives is instantiated by appropriate schemes. Figure 1
shows how the protocols depend on different building blocks.
For example, the generic AKE by Peikert [37] consists

Lattice-based AKE

Peikert

SIG

BLISS

MAC PRF

2-ZZDSD

HASH

SHA256

1-ZZDSD

KDF

FSXY

IND-CCA
KEM

IND-CPA
KEM

BCNS NewHope LPR DXL

Fig. 1 AKEs and possible instantiations; abbreviations are as follows:
Peikert is the AKE from [37], 2-ZZDSD and 1-ZZDSD are the AKEs
from [41], FSXY is the AKE from [24], SIG stands for Signature
scheme, MAC stands for message authentication code, PRF stands for
pseudorandom function, HASH stands for hash function, KDF stands
for key derivation function, KEM stands for key encapsulation mech-
anism, BLISS is the signature scheme from [22], SHA256 is a hash
function instantiation, and BCNS is based on [10], NewHope on [4],
LPR on [32,33], and DXL on [20]

of an IND-CPA secure KEM, a PRF, a signature scheme,
a MAC, and a hash function. Additionally, we give pos-
sible instantiations of the building blocks. For example,
the most efficient strongly unforgeable lattice-based sig-
nature scheme is BLISS [22]; hence, we choose BLISS
as instantiation for Peikert’s protocol. The construction by
Fujioka et al. [24], abbreviated by FSXY, is based on
an IND-CCA secure KEM, but due to the transform by
Fujisaki and Okamoto [26] an IND-CPA secure KEM can
be used.

As Fig. 1 indicates, there are different possibilities to
instantiate the KEM in the protocols by Fujioka et al. and by
Peikert. The only existing lattice-based KEM from the liter-
ature is proposed by Peikert [37]. However, Bos et al. [10]
use the similarities of the construction of KEMs and KEXs
to build the BCNS key exchange: The key exchange BCNS
is essentially an instantiation of the KEM by Peikert. We use
this relation the other way around and construct KEMs based
on themost efficient key exchangeprotocols.Hence,we com-
pare the performance of theKEMsbased on the key exchange
by Bos et al. [10] (BCNS), on NewHope by Alkim et al. [4],
and on the protocol by Ding et al. [20] (DXL) in the next sec-
tion. Fujioka et al. suggest to instantiate their protocol FSXY
with the encryption scheme by Lyubashevsky et al. [32,33]
(LPR). Hence, we consider a KEM based on LPR in the next
section as well. Depending on the result of Sect. 6, we instan-
tiate and compare the four AKEs.

In contrast to generic constructions, the security of direct
constructions is directly based on some hard problem such
as LWE. Also the direct constructions make use of different
building blocks such as hash functions or key distribution
functions (KDF), e.g., the two-pass and one-pass protocols
of Zhang et al. [41] as we also summarize in Fig. 1. We
abbreviate the protocols by 2-ZZDSDand 1-ZZDSD, respec-
tively.

4 Lattice-based KEMs and signature schemes

In this section, we describe the KEMs built from (unauthenti-
cated) key exchange protocols such as theDXLprotocol [20],
the BCNS protocol [10] which is essentially an instantiation
of Peikert’s KEM [37], and the NewHope protocol [4]. Since
Fujioka et al. suggested it as a possible instantiation for the
FSXYprotocol, we describe theKEMbased on LPR [32,33].

We depict the KEMs in detail in Figs. 2, 3 and 4. We use
both terms, key exchange and KEM, for the protocols in this
section when it is appropriate since they can be transformed
into each other. Moreover, we use the same abbreviations,
e.g., BCNS, for the key exchange protocol as well as for the
KEM. We describe the protocols using S and R as abbre-
viations for the later used notions of Sender and Receiver,
respectively.

123

Performance analysis of lattice-based authenticated key exchange protocols 705

Fig. 2 KEM based on the DXL protocol [20]; computations are done
in Rq , functions E , and S as defined above, index S (resp., R) is used
to indicate which of the values are computed by the sender (resp., the
receiver) in the AKEs in Sect. 7

Fig. 3 KEM based on the BCNS protocol [10]; computations are done
in Rq , functions �·�2q,2, 〈·〉2q,2, dbl, and rec as defined below; index
S (resp., R) is used to indicate which of the values are computed by the
sender (resp., the receiver) in the AKEs in Sect. 7

Fig. 4 IND-CPA secure KEM based on the NewHope protocol [4];
computations are done inRq , functions Rec, and HelpRec as defined
above, for a fair comparison hash functions H1 and H2 are instantiated
by SHA256 (Alkim et al. [4] use SHAKE-128 and SHA3-256), and
index S (resp., R) is used to indicate which of the values are computed
by the sender (resp., the receiver) in the AKEs in Sect. 7

4.1 Description of the KEM based on DXL

Ding et al. [20] propose a KEX that is secure against pas-
sive adversaries if R-LWE is hard. For a proof and an exact
definition of this security model, we refer to [20]. The key
exchange protocol is only proved to be secure in the two-user
setting.

To describe the DXL protocol, we define the following
functions below. Similar methods are also used in Sect. 7.3.
Ding et al. [20] define the functions δ0 : Zq → {0, 1}, δ1 :
Zq → {0, 1}, S : Zq → {0, 1}, and E : Zq ×{0, 1} → {0, 1}
as

δ0(x) =
{
0 if x ∈ [− ⌊ q

4

⌋
,
⌊ q
4

⌋]
1 otherwise,

δ1(x) =
{
0 if x ∈ [− ⌊ q

4

⌋ + 1,
⌊ q
4

⌋ + 1]
1 otherwise,

S(x) = δb(x) with b ←$ {0, 1},
E(x, δ) = x + δ

q − 1

2
(mod q, 2).

The functions δ0, δ1, S, and E can be extended to elements
inRq .

We give the corresponding KEM in Fig. 2. The KEM
depends on the parameters n, q, and an error distribution
χ that fulfills

Pr[‖x‖ >
√
2πnσ : x ← χ] ≤ negl(n)

for some parameter σ . This holds for example for Dn
σ if

σ ≥ ω(
√
log(n)). Let a ←$ Rq be a publicly known value

which can be shared among the parties.
The correctness of the scheme is guaranteed, i.e., it

holds that SKS = SKR with overwhelming probability, if
16π(nσ)2 ≤ q

4 − 2 [20]. Ding et al. propose the parameters
n = λ, q ≈ λ4, and σ = λ√

2πλ
.

4.2 Description of the KEM based on BCNS

Bos et al. [10] introduce a key exchange (BCNS) that
replaces the traditional number theoretic key exchange in the
Transport Layer Security protocol [18] by an R-LWE-based
protocol.

The BCNS protocol is essentially an instantiation of the
KEMintroduced byPeikert [37],withm being a power of two
and hence g = 1 in Peikert’s KEM.We give the definitions of
the needed functions for the instantiation used in the BCNS
protocol. Let q be a positive modulus. Then, the modulus
rounding function is defined as

�·�′
q,2 : Zq → Z2, x �→

⌊
2

q
x

⌉
(mod 2).

If q is an odd integer, the modulus rounding function on
Zq would be biased. Therefore, Peikert [37] introduced a
randomized doubling function dbl : Zq → Z2q , x �→
2x − e, where e = −1 with probability 0.25, e = 0
with probability 0.5, and e = 1 with probability 0.25. Let
I0 = {0, 1, . . . , ⌊ q

4

⌉ − 1} and I1 = {− ⌊ q
4

⌋
, . . . ,−1} =

{
⌊
3q
4

⌉
, . . . , q − 1} in Zq . The cross-rounding function is

defined by

〈v〉q,2 =
{
0 , if v ∈ I0 ∪ (

I0 + q
2

)

1 , if v ∈ I1 ∪ (
I1 + q

2

)
.

123

706 N. Bindel et al.

Let I ′
1 = {− ⌊ q

2

⌋
, . . . ,−1} and I ′

0 = {0, 1, . . . , ⌊ q
2

⌉−1},
and let E = [− q

4 ,
q
4

) ∩ Z. If q is odd, the reconciliation
function rec : Z2q × Z2 → Z2 with

rec(v, b) =
{
0, if v ∈ I ′

b + E (mod 2q),

1, otherwise

is used to compute the shared key. The value b is also called
the reconciliation information.

We give the corresponding KEM in Fig. 3. It depends on
the parameters n, q, and σ where q is an odd prime and σ

defines Dσ . Peikert uses a discretized Gaussian distribution,
but we follow Bos et al. [10] and use a discrete Gaussian
distribution. Let a ←$ Rq be a publicly known value which
can be shared among the parties. The KEM based on BCNS,
i.e., Peikert’s KEM, is IND-CPA secure if R-LWE is hard
given two R-LWE samples [37].

4.3 Description of the KEM based on NewHope

Alkim et al. [4] propose a generalization of the BCNS proto-
col, called NewHope. The main differences are a generalized
reconciliation mechanism and a different error distribution.
This allows new parameters with a much smaller modulus
q. Alkim et al. [4] use the centered binomial distribution
Ψk instead of the rounded Gaussian distribution without
significantly decreasing the security of the protocol. This
distribution has standard deviation σ = √

k/2. We depict
the KEM based on NewHope in Fig. 4.

Let B = (e1, e2, e3, g) where g = (1/2, 1/2, 1/2, 1/2)T

and ei is the i-th vector of unity. Moreover, let D4 be the
lattice defined by B.

The reconciliation and helper functions are defined as fol-
lows. If vS(4) ∈ Z

4
q and c(4) ∈ {0, 1, 2, 3}4, then

Rec
(
vS(4), c(4)

)
= Decode

(
1

q
vS(4) − 1

2r
Bc(4)

)
.

Moreover, the function HelpRec(vR) in the protocol of
the receiver is defined as

HelpRec(vR(4)) = CVPD4

(
2r

q
(vR(4) + bg)

)
(mod 2r),

where b ←$ {0, 1}. The algorithms CVP and Decode are
depicted in Figs. 5 and 6, respectively.

Furthermore, NewHope generates the public polynomial
a pseudorandomly for every run of the KEM to prevent back
doors and all-for-the-price-of-one attacks [4]. To generate a
pseudorandom polynomial a, the authors use a 256 bit seed
and a hash function, e.g., SHAKE-128 as suggested in [4].
This can be done similarly for all the other protocols. The
generation of a is depicted in Fig. 4. However, it is assumed

Fig. 5 CVP algorithm with input x ∈ R
4 and output z ∈ Z

4 such that
Bz is a closest lattice point to x

Fig. 6 Decode algorithm with input x ∈ R
4/Z4 and output k ∈ {0, 1}

such that kg is a closest vector to x + Z
4

that a is publicly known in the other protocols. Hence, we
do not consider the computation of a any further, especially
not in Sect. 7.

CCA Secure NewHope-Based KEM. Following the expla-
nations by Peikert [37], we describe an IND-CCA secure
KEM based on the NewHope protocol. It is derived as fol-
lows: First, we construct an IND-CPA secure PKE from
the IND-CPA secure NewHope-based KEM. Afterward, the
Fujisaki-Okamoto transform (FOT) [26] is applied to derive
an IND-CCA secure PKE. At last, an IND-CCA secure
KEM based on NewHope is constructed from the IND-CCA
secure PKE. We assume that the polynomial a is publicly
known to all parties to simplify notations. The generation
of a described above is still applicable. In addition to the
function defined above, we define two more hash functions,
H3 : {0, 1}∗ → {0, 1}256 and H4 : {0, 1}∗ → {0, 1}256,
which can again be instantiated with SHA256.

A crucial point during the Fujisaki-Okamoto transform is
to specify the randomness used during the encryption (resp.,
encapsulation). The encapsulation (i.e., the binomial sam-
pler in Fig. 7) is run on randomness PRG(H3(r ||k))) where
r , k ←$ {0, 1}256 and k is the session key.We depict the final
IND-CCA secure KEM based on the NewHope protocol in
Fig. 7.

4.4 Description of the KEM based on LPR

The LPR encryption scheme is based on the PKE described
in [32,33]. The scheme depends on the parameters n, q, t , and
k. Let t = ω(

√
lg n). Furthermore, let χ = �N (0, k2/2π)�

be the rounded continuous Gaussian distribution with k ≤√
q−2

2(2n+1)2t2
. This distribution is statistically indistinguish-

able from the discrete Gaussian distribution Dn
k/

√
2π
. Let

a ←$ Rq be a publicly known value which can be shared
among the parties. We depict the corresponding KEM in
Fig. 8.

123

Performance analysis of lattice-based authenticated key exchange protocols 707

Fig. 7 IND-CCA secure KEM based on NewHope; computations are
done in Rq ; index S (resp., R) is used to indicate which of the values
are computed by the sender (resp., the receiver) in the AKEs in Sect. 7;
functions Rec and HelpRec are as defined above. In contrast to the
CPA secure NewHope-based KEM in Fig. 4, we assume that the poly-
nomial a is publicly known to all parties. The encapsulation is run with
randomness PRG(H3(r ||k)))

Fig. 8 KEM based on the LPR scheme [32,33]; computations are done
in Rq , index S (resp., R) is used to indicate which of the values are
computed by the sender (resp., the receiver) in the AKEs in Sect. 7

4.5 Description of the signature scheme BLISS

The generic AKE protocol by Peikert [37] described in
Sect. 7.2 uses a signature scheme which is strongly existen-
tially unforgeable under chosen message attacks. We choose
the signature schemeBLISS [22] since it is currently themost
efficient lattice-based signature scheme satisfying the secu-
rity condition of strong unforgeability. Its security is based on
the hardness of R-SIS. We list other possible, but less efficient
candidates in “Appendix A”.

Since we do not modify the scheme BLISS, we do not
describe it here but refer to [22].

5 Instantiation and choice of parameters

All protocols considered in this paper base their security
on the hardness of R-LWE (except for the signature scheme
BLISS which is based on R-SIS). Currently, the most effi-
cient solvers for R-LWE for our instances are LWE solvers.
Therefore, we use the LWE-Estimator by Albrecht, Player,
and Scott [2] to estimate the hardness of our R-LWE instances.

Table 1 Overview of the parameters of all protocols for different bit-
security levels

DXL BCNS LPR NewHope

Security (bit) 76 91 100 106

n 512 512 512 512

q ≈ 229 ≈ 225.5 ≈ 223.6 ≈ 213.6

σ 3.19 3.19 3.19 3.46

Security (bit) 150 180 192 229

n 1024 1024 1024 1024

q ≈ 231 ≈ 227 ≈ 225.6 ≈ 213.6

σ 3.19 3.19 3.19 2.82

In case this is not possible, we cite security estimations from
other sources.All estimations by the tool are based on version
f69b17a published on November 10, 2015.

The LWE-Estimator estimates the bit hardness of LWE
against four kinds of attacks: the embedding approach, the
decoding attack, the Blum–Kalai–Wassermann algorithm,
and the Arora–Ge algorithm.We refer to [2] for more details.

The bit hardness of LWE depends on the dimension n, the
modulus q, and the Gaussian distribution Dσ defined by α =√
2π σ

q . For αq ≥ 8, the continuous Gaussian distribution

with σ = αq√
2π

≥ 8√
2π

approximates the discrete Gaussian
distribution well [41]. Therefore, we choose α (resp., σ) and
q accordingly.

For each protocol, we aim to choose parameter sets with
a bit security of 100 and 192 bit such that all correctness and
security conditions given by the protocol definitions hold. As
common [22,41],we assume that the security of the scheme is
the same as the hardness of LWE, i.e., we implicitly assume
that a tight security reduction from R-LWE to the scheme
exists.

All protocols require n to be a power of two. Hence, the
number of choices for n is limited and it is not always pos-
sible to reach exactly 100 or 192 bit. Increasing q while
keeping the same values for α and n usually decreases the bit
hardness of LWE. Moreover, higher values of q increase the
running time of mathematical operations since the involved
numbers become larger. Hence, we keep q as small as pos-
sible although we could have reached the exact bit hardness
of 100 or 192 by increasing q. Since we do not always reach
those bit-security levels exactly, we also refer to them as low
and high bit-security level. Most of the correctness condi-
tions give lower bounds for q. Since q depends linearly or
quadratic on αq, we choose αq > 8 as small as possible.

Since we aim for a fair performance comparison, we
choose parameters under the same conditions as far as pos-
sible and state and explain our choices in the following. We
summarize our instantiations and their respective bit security
in Table 1.

123

708 N. Bindel et al.

5.1 Instantiation of DXL

By the correctness condition mentioned in Sect. 4.1, we
obtain the following bound:

16π(nσ)2 = 8(nqα)2 ≤ q/4 − 2.

As described earlier, we choose α = 8/q, yielding q >

2048n2 + 8. With the smallest q that fulfills the above con-
ditions, we obtain bit-security levels of 76 and 150 bit. For a
bit security of 76 bit, we choose n = 512, q = 536881153,
and σ = 3.19, called DXL-76. For bit security of 150 bit, we
choose: n = 1024, q = 2147493889, and σ = 3.19, called
DXL-150.

5.2 Instantiation of BCNS

The KEM based on BCNS is basically the KEM by Peik-
ert [37] with n being a power of two. Hence, we choose
parameters according to Peikert [37] to guarantee correct-
ness, i.e., with m = 2n the inequalities q2/64 ≥ ((r2 +
2πrad(m)/m)(2l2 + n) + π/2)ω2 and ‖sS‖, ‖eS‖ ≤ l have
to hold. This holds true for l = n(r + √

rad(m)/m)
√
n. For

m being a power of two, rad(m) = 2. Hence, we get a lower
bound on q >

(
64ω2

((
64 + 2π

n

) (
128n3 + 32n2.5 + 2n2

+n) + π
2

)) 1
2 , where ω > 0 influences the probability of

incorrectness, which is less than 2n exp(3 · 2−128 − πω2).

With ω =
√

ln(2n/ε)
π

, we obtain an error probability of
less than ε. The parameter q needs to be odd. We choose
ε = 2−128 and the smallest possible value for q and achieve
security levels of 91 and 180. To obtain higher security levels
(and hence to get closer to 100 or 192), a smallerq is required,
and hence, the probability for incorrectness increases. For
91 bit of security, we choose n = 512, q = 46565383,
σ = 3.19, and ω = 5.52, called BCNS-91. For a bit security
of 180, we choose n = 1024, q = 131964963, σ = 3.19,
and ω = 5.54, called BCNS-180.

5.3 Instantiation of NewHope

Alkim et al. [4] suggest two parameter sets. The first achieves
a bit-security level of 106 bits. The other one achieves a bit-
security level of 229 bits. We refer to these instantiations as
NewHope-106 and NewHope-229, respectively. NewHope-
106 is given by q = 12289, n = 512, and σ = √

12 and
NewHope-229 is given by q = 12289, n = 1024, and σ =√
8. Since the secret is not chosen to be Gaussian distributed,

we cannot use the LWE-Estimator to choose parameters closer
to 192 bits of security.

5.4 Instantiations of LPR

According to the suggestions by Fujioka et al. [24], the LPR

scheme requires k ≤
√

q−2
2(2n+1)2t2

for χ ≈ Dn
k/

√
2π

and k =
αq. With k ≈ 8, we obtain 256(2n+1)t2+2 ≤ q. The value
t = ω(

√
log2(n)) influences the size of Gaussian sampled

values. We choose t big enough so that we can remove the
re-sampling step that Fujioka et al. [24] introduced.

We try different combinations of n and t , calculate the
corresponding q, and test the bit security with the LWE-
Estimator. The parameters that yield the desired bit security
are n = 512, t = 7, q = 12865537, σ = 3.19 for 100 bit,
called LPR-100, and n = 1024, t = 10, q = 52457473,
σ = 0.78 for 192 bit, called LPR-192.

5.4.1 Instantiation of BLISS

Ducas et al. [22] state different parameter sets for their signa-
ture scheme BLISS. Since the LWE-Estimator does not give
estimations for the hardness of R-SIS, we restate two param-
eter sets given by Ducas et al. [22] with the corresponding
estimated security level. The parameter τ determines the rep-
etition constant M = exp(1

2τ 2
). For 128 bit of security, we

use n = 512, q = 12289, σ = 215, δ1 = 0.3, δ2 = 0,
τ = 1, ς = 23, d = 10, B2 = 12872, and B∞ = 2100,
called BLISS-128. For 192 bit of security we use n = 512,
q = 12289, σ = 271, δ1 = 0.45, δ2 = 0.06, τ = 0.55,
ς = 39, d = 8, B2 = 9901, and B∞ = 1613, called BLISS-
192.

6 Evaluating the performance

We implemented the KEMs mentioned in the previous sec-
tion in C++ and compare the running times.4 We use the hash
functions from the cryptographic library fromOpenSSL.Fur-
thermore, we use theNTL library to implement the protocols.
Our software is available on https://www.cdc.informatik.tu-
darmstadt.de/cdc/personen/nina-bindel.

To measure the running time, we use std::clock().
Our results are given as the mean of 10,000 runs. Our exper-
iments are done on a 3.60GHz Intel(R) Core(TM) i7-4790
CPU processor, 8GB RAM.

6.1 Running time of Gaussian sampling

We compare the timings of the following Gaussian sampling
algorithms: rejection sampling [27], inverting the cumulative

4 We do not consider the running times of the IND-CCA secure KEM
based on NewHope in this section since the FOT is a generic transfor-
mation which can be applied to the other KEMs as well. Hence, it is
enough to compare only the IND-CPA secure KEMs.

123

https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel
https://www.cdc.informatik.tu-darmstadt.de/cdc/personen/nina-bindel

Performance analysis of lattice-based authenticated key exchange protocols 709

Table 2 Running times of Gaussian sampling algorithms

σ Rejection ICDF Knuth–Yao Ziggurat

3.19 4.78649 0.831372 0.262177 2.1033

425396 7.5628 2.60938 0.603896 2.00356

The times refer to the average running time of sampling n = 2048
elements from Dσ over 10,000 runs; running times are given in mil-
liseconds (ms)

distribution function (ICDF) [36], the Ziggurat [12], and the
Knuth–Yao algorithm [23]. We refer to the original papers
for detailed descriptions.

We measure the average running time of sampling n ele-
ments from the discrete Gaussian distribution Dσ . In the
analyzed protocols, the largest value of σ equals 425,396
and the smallest value of σ equals 3.19. Hence, we test all
four Gaussian sampling algorithms for those two values of
σ . The results are shown in Table 2. For both values of σ , the
Knuth–Yao sampling method is most efficient, and hence,
we use it in all protocols.

6.2 Running time of basic mathematical operations

In the following, we analyze the running time of small
building blocks and mathematical operations of the different
KEMsdescribed in Sect. 3with their respective instantiations
for low and high bit-security levels.

The four mathematical operations which are used in each
of the KEMs are sampling from theGaussian distribution Dn

σ

with the same standard deviation σ = 3.19 (or from a bino-
mial distribution with an approximately the same standard
deviation), multiplication of a polynomial and the integer 2,
multiplication of two polynomials, and addition of two poly-
nomials. Every mentioned mathematical operation occurs
several times during one run of a protocol. Table 3 shows
the average values over 10,000 runs of the complete proto-
col, and over every time the operation is computed during
one run. For example, sampling from Dn

σ occurs four times
during BCNS and hence, the stated time is the mean of those
four measured running times which are already the means
of 10,000 runs of the algorithm. Running times are rounded
and given in milliseconds.

As indicated in Table 3, polynomial multiplication is the
slowest mathematical operation in each scheme. It is ten to
twelve times slower than Gaussian sampling, which is the
second slowest operation. However, we emphasize that we
do not use fast polynomial multiplication since the aim of
this work is to give a fair comparison and not to provide effi-
cient implementations. The fastest operation is the addition
of two polynomials in all protocols except for NewHope,
where sampling is the fastest operation.

Table 3 Running times of mathematical operations of the KEMs based
on DXL, BCNS, LPR, and NewHope; running times are given in mil-
liseconds (ms)

DXL BCNS LPR NewHope

Security (bit) 76 91 100 106

n 512 512 512 512

log2(q) 29 25.5 23.6 13.6

Gauss. sampling σ = 3.19 0.086 0.086 0.086 –

Bino. sampling σ = 3.46 – – – 0.007

2 times poly. 0.030 0.032 0.033 –

Poly. times poly. 0.870 0.875 0.876 0.869

Poly. addition 0.017 0.021 0.020 0.017

Security (bit) 150 180 192 229

n 1024 1024 1024 1024

log2(q) 31 27 25.6 13.6

Gauss. sampling σ = 3.19 0.158 0.159 0.159 -

Bino. sampling σ = 2.82 – – – 0.010

2 times poly. 0.058 0.062 0.064 –

Poly. times poly. 1.811 1.809 1.809 1.812

Poly. addition 0.034 0.042 0.039 0.034

We see that the running time of Gaussian sampling is
approximately the same for all three protocols that use Gaus-
sian sampling. The NewHope protocol replaces Gaussian
sampling by sampling from a binomial distribution with the
same standard deviation. For this operation, we cite the run-
ning times given in [4]. Hence, binomial sampling is roughly
ten times faster than Gaussian sampling which might also be
due to their much more efficient implementation.

The running time of multiplication of a polynomial with
the integer 2 is rather different in the different KEMs because
the multiplicated polynomials are distributed differently: In
DXL the polynomials haveGaussian distributed coefficients.
In the remaining protocols, the coefficients are uniformly dis-
tributed. A similar observation can be made for polynomial
addition.

Each protocol additionally computes one or more other
functions. This can be anything from dividing the modulus
q by two, subtracting one from a constant involving q, or
rounding a fraction. Those operations take between 0.0001
and 0.0002ms and do not seem to depend significantly on the
instantiation. Hence, we do not consider them any further.

6.3 Running time of reconciliation and helper
functions

Aside from the four mathematical operations discussed in
the previous section, each of the described KEMs, i.e., DXL,
BCNS, NewHope, and LPR, contains some kind of recon-
ciliation and helper function. We compare the running times

123

710 N. Bindel et al.

Table 4 Running times of
corresponding reconciliation
and helper functions of DXL,
BCNS, NewHope, and LPR;
running times are given in
milliseconds (ms)

Protocol/instantiation Helper function Reconciliation

Function Time Function Time

DXL-76 S(·) 0.025 E(·, ·) 0.036

BCNS-91 BCNS-91〈·〉2q,2 BCNS-910.020 rec(·, ·) 0.020

�·�2q,2 0.016

NewHope-106 HelpRec(·) 0.142 Rec(·) 0.010

LPR-100 Figure 8, L. 8 0.024 Figure 8, L. 10–11 0.070

DXL-150 S(·) 0.050 E(·, ·) 0.053

BCNS-180 〈·〉2q,2 0.040 rec(·, ·) 0.040

�·�2q,2 0.032

NewHope-229 HelpRec(·) 0.283 Rec(·) 0.020

LPR-192 Figure 8, L. 8 0.048 Figure 8, L. 10–11 0.141

Table 5 Running times of uniform sampling during DXL, BCNS,
NewHope, and LPR for our instantiation of low and high bit-security
levels; running times are given in milliseconds (ms)

Protocol Sampling space Running time (ms)

Low bit Sec. High bit Sec.

DXL {0, 1}n 0.022 0.044

BCNS {−1, 0, 0, 1}n 0.026 0.051

NewHope {0, 1}n/4 0.001 0.002

LPR {0, 1}n 0.023 0.045

of those in this section, listed in Table 4. The respective run-
ning times are rather small. The corresponding reconciliation
function of DXL is E ; the helper function is S. The corre-
sponding reconciliation function for BCNS is rec(·, ·); the
helper functions are 〈·〉2q,2 and �·�2q,2. The corresponding
reconciliation function for NewHope is Rec(·); the helper
function is HelpRec(·). The corresponding reconciliation
function for LPR is shown in Fig. 8, Lines 10 and 11; the
helper function is shown in Fig. 8, Line 8.

6.4 Running time of the hash function and uniform
sampling

All authenticated key exchange protocols need one or more
hash functions. We always instantiate them with SHA256
and apply the hash function to elements of Zx

q × {0, 1}y ,
where x, y ∈ N. The running time depends on the value of
x, y, and q. The running times increase with larger input,
and hashing elements of Zq takes longer than hashing bits.
For example, hashing a 1024 bit string takes 0.01 ms while
hashing an element in Z

1024
q takes between 0.035 and 0.05

ms depending on the size of q. Furthermore, Table 5 gives
our results for sampling uniformly at random over different
sampling spaces. Here the NewHope protocol performs very
fast compared to the others because less intermediate data

Table 6 Running times of the signature scheme BLISS; running times
are given in milliseconds (ms)

Algorithm BLISS-128 BLISS-192

Sign 0.124 0.375

Verify 0.030 0.032

have to be saved. Similar methods might be possible for the
other protocols.

6.5 Running time of the signature scheme BLISS

The authenticated key exchange protocol proposed by Peik-
ert [37] also makes use of a signature scheme that we
instantiate with BLISS [22]. Therefore, we recall the running
time of BLISS in Table 6 according to Ducas et al. [22]. This
means that the timings were not obtained on the same server
via the same implementation. Since Ducas et al. give also
a proof-of-concept implementation in the same language as
we do, the measured times are comparable with our derived
times. The running time of the key generation algorithm is
not publicly available.

6.6 Overall running times

We summarize the overall running times and communication
space in Table 7. The NewHope-based KEM is the fastest of
the four analyzed KEMs. The main advantage lies in the key
generation algorithm where it is about 0.15 and 0.3 ms (for
the low and high bit-security level, respectively) faster than
the others. This is caused by the faster sampling process.
The second fastest KEM is the one based on LPR followed
by BCNS. The differences, however, are small.

If we analyze the needed amount of communication bits,
we find that NewHope needs to communicate approximately
half of the other communication requirements. With this, we

123

Performance analysis of lattice-based authenticated key exchange protocols 711

Table 7 Overall running time and space of the four KEMs based on
DXL, BCNS, NewHope, and LPR.

Protocol/instantiation Security Running time (ms) Space

(bit) KeyGen Encap Decap (bit)

DXL-76 76 1.089 2.176 1.039 31,232

BCNS-91 91 1.063 2.258 0.928 27,136

NewHope-106 106 0.09 1.948 0.890 15,360

LPR-100 100 1.065 2.101 0.995 36,864

DXL-150 150 2.219 4.427 2.114 66,560

BCNS-180 180 2.161 4.411 1.914 56,320

NewHope-229 229 1.866 4.028 1.837 30,720

LPR-192 192 2.163 4.280 2.047 79,872

conclude that NewHope is the most efficient instantiation of
the four analyzed KEMs in terms of running time as well as
communication bits.

Since Alkim et al. [4] state superiority of their scheme
compared to all other schemes, our result does not come as a
surprise. However, as Table 7 shows, the differences between
NewHope and BCNS are not as large as stated in [4]: the
encapsulation of BCNS-91 is only 1.16 times slower than
NewHope, in contrast to eight times slower as shown in [4].
Hence, the advantage of NewHope during the encapsulation
comes from very efficient implementation methods.

7 Description of AKE protocols

In this section, we describe four authenticated key exchange
protocols: our instantiation of the generic AKE by Fujioka
et al. [24], our instantiation of the generic AKE by Peik-
ert [37], and the direct two-pass and one-pass AKE by
Zhang et al. [41].

7.1 The FSXY protocol

Fujioka et al. [24] developed anAKEprotocol, which is CK+
secure [30] in the random oracle model.

Let K EMcca = (Gencca, Encapcca,Decapcca) and simi-
larly K EMcpa = (Gencpa, Encapcpa,Decapcpa) be two key
encapsulation mechanisms. Furthermore, let H : {0, 1}∗ →
{0, 1}κ be a hash function. In the following, we describe the
generic protocol, but we depict the protocol with our instan-
tiation in Fig. 9.

Key generation: The sender (resp., receiver) generates
(skS,pkS) ← Gencca(1κ) (resp., (skR,pkR)).

Initiation: The sender generates the keys (skT ,pkT) ←
Gencpa(1κ), and it computes (cS, kS) ← Encapcca(pkR).
It sends (cS,pkT) to the receiver.

Fig. 9 FSXY authenticated key exchange protocol by Fujioka,
Suzuki, Xagawa, and Yoneyama where the KEMs are instantiated
by NewHope and hash functions by SHA256; we assume that the
value a is publicly known to all parties; the session id is sid =
(IS, IR, pS, pR, pS1 , cS, cR1 , cR2)

Response: The receiver computes values (cR, kR) ←
Encapcca(pkS) and (cT , kT) ← Encapcpa(pkT), and it
sends (cR, cT) to the sender. The receiver obtains SK =
H(kS, kR, kT , sid) with kS ← Decapcca(cS, skR).

Finish: The sender computes kR ← Decapcca(cR, skS)
and kT ← Decapcpa(cT , skT). It computes the session

123

712 N. Bindel et al.

key SK = H(kS, kR, kT , sid) with the session identity
sid = (IS, IR,pkS,pkR,pkT , cS, cR, cT).

The FSXY protocol is correct, i.e., both parties com-
pute the same shared session key, if both KEMs are
correct. Furthermore, FSXY is CK+ secure (in the ran-
dom oracle model) if K EMcca is one-way-CCA (OW-
CCA) secure and K EMcpa is one-way-CPA (OW-CPA)
secure. We refrain from a formal security definition, since
Fujioka et al. [24] instantiate K EMcpa and K EMcca

by IND-CPA secure PKEs and transform those encryp-
tion schemes via the Fujisaki-Okamoto transform [26]
(FOT) to IND-CCA secure encryption schemes. IND-CCA
security implies OW-CCA security of the corresponding
KEMs [26]. Let E .Enc(m,pk) be the encryption function
of an IND-CPA secure PKE E using randomness r . The FOT
E ′.Enc(m,pk) = E .Enc(m||r ,pk) is the encryption function
of an IND-CCA secure PKE E ′ using randomness H(m||r),
where H is a hash function.We refer to [26] for more details.
Since the FOT is very simple, we assume that the most effi-
cient K EMcpa is transformed to themost efficient K EMcca .

Due to our results in Sect. 6, we choose the IND-CPA
and the IND-CCA secure KEM based on NewHope. We take
a similar approach as Fujioka et al. to construct the CCA
secure KEM based on NewHope using the FOT (cf. Fig. 7).
We depict our instantiation of FSXY in Fig. 9.

7.2 The Peikert protocol

In the following, we describe the generic AKEby Peikert that
we depict with our instantiation in Fig. 10. Peikert’s protocol
makes use of K EMcpa = (Gencpa, Encapcpa, Decapcpa)
with key space K , Σ = (Σ.Gen, Σ.Sign, Σ.Ver), MAC =
(MAC.Gen,MAC.O,MAC.Ver) with key space K ′ and mes-
sage space {0, 1}∗, and a PRF : K × {0, 1} → K ′.

Key generation: The sender (resp., the receiver) gener-
ates (skS,pkS) ← Σ.Gen(1κ) (resp., (skR,pkR) ←
Σ.Gen(1κ)).

Initiation: The sender generates the ephemeral key pair
(sS, pS) ← Gencpa(1κ) and sends pS to the receiver.

Response: The receiver computes the encapsulation (c, k) ←
Encapcpa(pS), the values k0 = PRF(k, 0) and k1 =
PRF(k, 1) with k0 being the session key, and the MAC
tag tR ← MAC.O(k1, (1, sid, IR)) for message (1, sid, IR)

and key k1. Furthermore, the receiver generates the signa-
ture σR = Σ.Sign(skR, (1, sid, pS, c)) with secret static
key skR . The values tR , σR , and c are sent to the sender.

Finish (sender): The sender computes the decapsulation
k ← Decapcpa(c, sS) and the state (k0, k1) = (PRF(k, 0),
PRF(k, 1)). The sender verifies the signature σR and the
MAC tag tR . If both are accepted, the sender accepts k0 as ses-
sionkey. It computes thevalue tS ← MAC.O(k1, (0, sid, IS))

andgenerates the signatureσS =Σ.Sign(skS, (0, sid, pS, c)).
Both, tS and σS , are sent to the receiver.

Finish (receiver): The sender verifies the signature σS and
the MAC tag tS . If both are accepted, k0 is accepted as the
session key.

Peikert’s protocol is SK secure in the post-specified peer
model [40] if the signature schemeΣ and MAC are existen-
tially unforgeable under chosenmessage attacks, K EMcpa is
an IND-CPA secure KEM, and PRF is a secure pseudoran-
dom function. SKsecurity ensures, for example,weakperfect
forward secrecy, and the post-specified peer model allows
that the peering party is not specified in advance, but dis-
covered during the run of the protocol. For more details, we
refer to [14,37]. We instantiate the protocol with the lattice-
based signature scheme BLISS and the IND-CPA secure
KEM based on NewHope. The detailed protocol with our
instantiation is given in Fig. 10. For reasons of clarity and
comprehensibility, we do not give our instantiations of the
hash functions or the MAC in Fig. 10, but we do instantiate
both with SHA256 in our implementation.

7.3 The ZZDSD protocols

The AKE by Zhang, Zhang, Ding, Snook, and Dagdelen [41]
is the only direct lattice-based AKE. There exists a two-
pass and a one-pass version of the protocol which we call
2-ZZDSD and 1-ZZDSD, respectively. First, we define the
needed cryptographic primitives and two additional func-
tions. Afterward, the protocol is explained. The 2-ZZDSD
and the 1-ZZDSD are depicted in detail in Figs. 11 and 12,
respectively. Both protocols need a hash function and a KDF
defined as

H : {0, 1}∗ → Dn
σ3

and

K DF : {0, 1}∗ → {0, 1}n,

with σ3 being one of three different standard deviations used
in the protocol.5 Furthermore, let q > 2 be an odd prime and
define the set E = {−� q

4 	, . . . , � q
4 �} and the functions

Cha : Zq → Z2, v �→
{
0 if v ∈ E,

1 otherwise,

and Mod2 : Zq × {0, 1} → {0, 1} with Mod2(v, b) =((
v + b q−1

2

)
(mod q)

)
(mod 2). The functions Cha(·)

and Mod2(·) can be extended to elements ofRq by applying
them coefficient-wise to the image of elements of Rq under
the coefficient embedding.

5 In our implementation, we instantiate the hash function H by first
using SHA256 and then using its random output bit string for sampling
from Dn

σ3

123

Performance analysis of lattice-based authenticated key exchange protocols 713

Fig. 10 Peikert’s AKE where the KEM is instantiated with
NewHope and the signature scheme with BLISS; Fd1,d2 =
{h ∈ Rq | d1 = |{hi = ±1}|, d2 = |{hi =
±2}|, and the rest of the coefficients are equal to zero},

δS = (
M exp(−||skScS ||2/(2σ 2))cosh(〈(zS1 , zS2)t , skScS〉/σ 2)

)
and

δR = (
M exp(−||skRcR ||2/(2σ 2))cosh(〈(zR1 , zR2)

t , skRcR〉/σ 2)
)
;

the function H2 is the hash function from NewHope and H is the hash
function from BLISS; computations are done in Rq

123

714 N. Bindel et al.

Fig. 11 Protocol 2-ZZDSD with rejection probability δ =
min

(
D2n

σ2
(z)

MD2n
σ2 ,z1

(z)
, 1

)
; computations are done in Rq

Fig. 12 1-ZZDSD AKE protocol; the rejection probability is 1 −
δ with δ = min

(
D2n

σ2
(z)

MD2n
σ2 ,z1

(z)
, 1

)
; sid = (IS, IR, xS, wS, σS) =

(IS, IR, xS, wS, σR); computations are done in Rq

Zhang et al. prove 2-ZZDSD to be secure in the Bellare–
Rogaway security model [8]. If 16 ·7σ 2

2
√
n < q, correctness

holds with overwhelming probability [41].
The protocol 1-ZZDSD is not wPFS. It is proved to be

secure in a model similar to [30] in the random oracle
model [41]. Also, for the 1-ZZDSD protocol a smaller q
suffices for correctness. More concretely, q can be chosen
σ2
σ1
-times smaller than in the 2-ZZDSDprotocol.More details

Table 8 Running times of mathematical operations of 1-ZZDSD and
2-ZZDSD for the low and high bit-security level; running times are
given in milliseconds (ms)

Protocol/
instantiation

2-ZZDSD
-100

1-ZZDSD
-81

2-ZZDSD
-210

1-ZZDSD
-160

Security (bit) 100 81 210 160

Gauss. sampl.
σ1

0.157 0.083 0.305 0.157

Gauss. sampl.
σ2

0.279 0.139 0.726 0.283

2 times poly. 0.060 0.030 0.117 0.059

Poly. mult. 2.380 0.869 5.147 1.814

Poly. addition 0.033 0.017 0.066 0.034

Cha 0.031 0.020 0.061 0.039

Mod2 0.033 0.038 0.066 0.077

follow in Sect. 8. The public parameters and the key gener-
ation algorithm are the same as in 2-ZZDSD.

8 Instantiations and performance results of
the AKEs

In this section, we give concrete instantiations of the
ZZZDSDprotocols.Afterward,we compare the performance
of our C++ implementation of those protocols to our instan-
tiation of FSXY and Peikert’s protocol.

8.1 Concrete instantiation of ZZDSD

As before, we use the LWE-Estimator (or if not possible cite
from the original source) to choose parameters for low (aim-
ing to reach 100) and high (aiming to reach 192) bit-security
levels for 1-ZZDSD and 2-ZZDSD. We summarize the run-
ning times of the main mathematical operations in Table 8.

The two-pass ZZDSD protocol requires n to be a power
of two and an odd prime q such that q = 1 (mod 2n). For
correctness of the protocol, q > 16 · 7σ 2

2
√
n with σ2 =

1
2τσ 2

1 n has to hold. The parameter σ1 = αq/
√
2π denotes

the Gaussian parameter. The repetition rate for the rejection
sampling is given by M = exp(12

τ
+ 1

2τ 2
). With τ = 12,

we obtain M = 2.72, n = 1024, q = 14186338877441,
σ1 = 3.192, σ2 = 62914.56 ≈ 215.9, and σ3 = 3.397 for
which the LWE-Estimator returns a bit security of 100 bit,
referred to as 2-ZZDSD-100. For the high bit-security level,
we choose n = 2048. Since the tool fails to return a result, we
restate the estimations given byZhang et al. [41] for 210 bit of
security. That means q = 1125899906949121, σ1 = 3.397,
σ2 = 425396.146, σ3 = 3.397, τ = 36, and M = 1.396,
called 2-ZZDSD-210.

123

Performance analysis of lattice-based authenticated key exchange protocols 715

In the one-pass ZZDSD protocol, q can be chosen such
that q > 112σ2σ1

√
n. For n = 512, we obtain a bit secu-

rity of 81 with τ = 12, q = 255111169, σ1 = 3.2,
σ2 = 31457.28, σ3 = 3.192, and M = 2.728. Smaller
values of τ increase the bit security, but also the rejection
constant M to a value larger than 3. This is not practical. For
n = 1024, we obtain a bit-security level between 151 and
160 bit for values of τ between 12 and 36. For n = 2048 and
τ = 36, the bit-security level is 313 bit. Hence, bit-security
levels of 81 and 160 bit are the bestwe achieve.We choose the
following parameters: n = 1024, q = 721563649, σ1 = 3.2,
σ2 = 62914.56, σ3 = 3.192, τ = 12, and M = 2.728 for a
security level of 160 bit, called 1-ZZDSD-160, and n = 512,
q = 255111169, σ1 = 3.2, σ2 = 31457.28, σ3 = 3.192,
τ = 12, and M = 2.728 for a bit-security level of 81 bit,
called 1-ZZDSD-81.

8.2 Performance results of the AKEs

In this section, we present the results of our experiments of
the ZZDSD protocols and the instantiations of the generic
protocols. We measure the running times of the single opera-
tions during the run of the ZZDSD protocols in Sect. 8.1. As
for the generic protocols FSXYand Peikert’s protocol, which
are constructed from building blocks as stated in Fig. 1, we
use the results derived in Sects. 6 and 7. We obtain the total
running times by adding the running times of their build-
ing blocks and state our results of the total running times in
Table 9.

The overall running time is divided into three algorithms:
key generation and the protocol of the receiver and the sender.
We do not measure and consider the time to generate the
polynomial a, but we assume that it is publicly known to all
parties.

As indicated in Table 9, 1-ZZDSD outperforms the other
three protocols clearly in its amount of communication bits
for the low and high bit-security level. This is not toomuch of
a surprise since it is a one-pass protocol. For protocols with
two or more passes, our instantiation of Peikert’s protocol
uses the least communication bits for the low (resp., high)
bit-security level with 27,341 (resp., 44,544) bits, followed
first by the FSXY, and then by the ZZDSD protocol.

We compute the communicated bits as the total amount of
communication bits, i.e., public keys and other transmitted
data, such as reconciliation bits.

We estimate the public key size by n�log2(q)� for pk ←$

Rq and take 2nσ as an estimation for the secret key size for a
Gaussian (or binomial) sampled polynomial of degree n with
standard deviation σ . The lowest public key size is given by
Peikert with 7000 bits for approximately 106 bit and 192 bit
of security. Similarly, the lowest secret key size is given by
Peikert with 2000 bits for 106 bit security and 3000 bits for
192 bit of security. Ta

bl
e
9

O
ve
ra
ll
ru
nn

in
g
tim

es
an
d
co
m
m
un

ic
at
io
n
bi
ts

Pr
ot
oc
ol
/in

st
an
tia

tio
n

Se
cu
ri
ty

To
ta
lr
un

ni
ng

tim
e
(m

s)
Sp

ac
e
(b
it)

M
es
sa
ge
-

H
ar
dn

es
s

Se
cu
ri
ty

m
od

el
(w

)P
FS

?

(b
it)

K
ey
G
en

R
ec
ei
ve
r

Se
nd

er
C
om

m
un

ic
at
io
n

Pu
bl
ic
ke
y

Se
cr
et
ke
y

pa
ss
es

as
su
m
pt
io
n

FS
X
Y
-1
06

10
6

0.
09

4.
99
9

4.
03
1

32
,7
68

71
68

35
47

2-
pa
ss

R
-L
W
E

C
K

+
in

R
O
M

w
PF

S

2-
Z
Z
D
SD

-1
00

10
0

2.
78
2

29
.2
96

29
.2
68

91
,1
36

45
,0
56

65
37

B
R
in

R
O
M

1-
Z
Z
D
SD

-8
1

81
1.
08
4

2.
83
0

9.
28
0

14
,8
48

14
,3
36

32
77

1-
pa
ss

au
th
.I
N
D
-C
C
A

–

Pe
ik
er
t-
10
6

10
6

–
2.
13
3

1.
16
5

27
,3
41

71
68

20
48

3-
pa
ss

R
-L
W
E
,R

-S
IS

SK
PF

S

FS
X
Y
-2
29

22
9

1.
86
6

10
.1
67

9.
84
3

64
,5
12

14
,3
36

57
92

2-
pa
ss

R
-L
W
E

C
K

+
in

R
O
M

w
PF

S

2-
Z
Z
D
SD

-2
10

21
0

5.
90
4

41
.1
04

41
.0
47

21
0,
94
4

10
4,
44
8

13
,9
14

B
R
in

R
O
M

1-
Z
Z
D
SD

-1
60

16
0

2.
22
1

5.
88
2

19
.2
89

31
,7
44

30
,7
20

65
54

1-
pa
ss

au
th
.I
N
D
-C
C
A

–

Pe
ik
er
t-
19
2

19
2

–
4.
46
7

4.
14
3

44
,5
44

71
68

30
72

3-
pa
ss

R
-L
W
E
,R

-S
IS

SK
PF

S

T
im

es
ar
e
gi
ve
n
in
m
ill
is
ec
on

ds
(m

s)
.C

om
m
un

ic
at
io
n
bi
ts
ar
e
gi
ve
n
as

th
e
to
ta
la
m
ou

nt
of

co
m
m
un

ic
at
io
n
in
by

te
.W

e
w
ri
te
“–
”
as

ru
nn

in
g
tim

e
of

th
e
ke
y
ge
ne
ra
tio

n
of

Pe
ik
er
t-
10
6
an
d
Pe
ik
er
t-
19
2

si
nc
e
th
e
ru
nn
in
g
tim

es
de
pe
nd

on
th
e
tim

e
fo
r
ke
y
ge
ne
ra
tio

n
of

th
e
si
gn
at
ur
e
sc
he
m
e
B
L
IS
S
fo
r
w
hi
ch

th
os
e
tim

es
ar
e
no
tp

ub
lic
ly

av
ai
la
bl
e.
T
he

ab
br
ev
ia
tio

n
(w

)P
FS

st
an
ds

fo
r
(w

ea
k)

pe
rf
ec
t

fo
rw

ar
d
se
cr
ec
y

123

716 N. Bindel et al.

Table 10 Overview of selected state-of-the-art lattice-based signature schemes that are strongly unforgeable under chosen message attack; sizes
are given in byte; content of the table is taken from [3]

Scheme Security (bit) CPU Key Size (byte) Sign. Size (byte) Cycle counts

GPV 96 AMD Opteron vk: 28,508,160 30,105 sign: 312,800,000

[6,27] 8356 (Barcelona) sk: 12,353,536 verify: 50,600,000

BG 97 Intel Core vk: 1,619,940 1495 sign: 1,203,924

[5,16] i7-4770K (Haswell) sk: 912,380 verify: 335,072

GPV-poly 96 AMD Opteron vk: 55,906 32,972 sign: 80,500,000

[6,27] 8356 (Barcelona) sk: 26,316 verify: 11,500,000

Bliss- bI 128 “Intel Core vk: 7168 1559 sign: ≈ 358,400

[21,22] 3.4GHz” sk: 2048 verify: 102,000

The fastest total running time is given by our instantiation
of Peikert’s protocol. The running time of FSXY is approxi-
mately two to three times slower than Peikert’s protocol. The
2-ZZDSD protocol is much slower than all other protocols.
Its running time is, even without counting the time for repe-
tition because of rejection sampling, three times slower than
FSXY. As shown in [41], the running time of both ZZDSD
protocols can be significantly reduced by choosing parame-
ters for a lower repetition rate. However, this also reduces the
bit security and does still not achieve a performance similar
to our instantiation of Peikert’s protocol.

9 Summary and evaluation

In this paper, we analyzed four different KEMs based on the
following PKEs or KEX protocols: DXL, BCNS, NewHope,
and LPR.We chose suitable parameters for each of the proto-
cols aiming for 100 and 192 bits of security.We implemented
each of the KEMs and compared the results of our experi-
ments. Depending on this analysis we chose the KEM based
on NewHope to instantiate the generic AKEs by Peikert
and the FSXY protocol. We compared the resulting running
time and space with our implementation of the 2-ZZDSD
and 1-ZZDSD protocol which are directly constructed from
lattice-based hardness assumptions.

We show that our instantiation of Peikert’s AKE is more
efficient with respect to running time and space compared
to the direct construction of 2-ZZDSD. We give a detailed
comparison of the four AKEs with respect to security and
performance properties in Table 9.

We emphasize that we do not consider the differences
between the security properties of the considered protocols in
our performance analysis since thiswork is purely focused on

a comparisonwith respect to the implementationmethods. To
compensate, we state the different security properties such as
the securitymodel andwhether the protocol is forward secure
in Table 9. One of the strongest security models for authenti-
cated protocols is the CK+ security model, which is used in
the FSXY protocol. Unlike the other AKEs, 1-ZZDSD is not
wPFS. This is because it has only onemessage pass.We leave
the performance analysis with respect to security models for
future work.

Acknowledgements We thank the anonymous reviewers for their
detailed and helpful comments on an earlier version of this paper. This
work has been co-funded by the DFG as part of project P1 within the
CRC 1119 CROSSING.

A Comparison of selected signature schemes
from the literature

In this section, we give a short overview on post-quantum
signature schemes that are (not) suitable as instantiation
for the AKE by Peikert. A suitable signature scheme must
be strongly unforgeable under chosen message attack. We
compare the performance of existing lattice-based signa-
ture schemes that are strongly unforgeable in Table 10.
Other lattice-based signature schemes such as [1,3,7,28]
are not proved to be strongly unforgeable, but only exis-
tentially unforgeable. The hash-based signature schemes
SPHINCS [9] and XMSS [13] are also not proved to be
strongly unforgeable. Multivariate signature schemes such
as [15,19,39] are also not proved to be strongly secure, but
only to be globally unforgeable. Hence, we choose BLISS
to instantiate the AKE by Peikert, since BLISS is the most
efficient scheme with respect to running times and sizes that
fulfills the security requirements.

123

Performance analysis of lattice-based authenticated key exchange protocols 717

References

1. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Azzurra Mar-
son, G.: An efficient lattice-based signature scheme with provably
secure instantiation. In: Progress in Cryptology—AFRICACRYPT
2016—8th International Conference on Cryptology in Africa, Fes,
Morocco, 3–15 April 2016, Proceedings, pp. 44–60 (2016)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of
learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Alkim, E., Bindel, N., Buchmann, J., Özgür Dagdelen, Eaton, E.,
Gutoski, G., Krämer, J., Pawlega, F.: Revisiting TESLA in the
quantum random oracle model. Cryptology ePrint Archive, Report
2015/755 (2015). http://eprint.iacr.org/2015/755

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum
key exchange—a new hope. In: 25th USENIX Security Sympo-
sium,USENIXSecurity 16,Austin, TX,USA, 10–12August 2016,
pp. 327–343 (2016)

5. Bai, S., Galbraith, S.D.: An improved compression technique for
signatures based on learning with errors. In: Benaloh, J. (ed.) CT-
RSA 2014, LNCS, vol. 8366, pp. 28–47. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-319-04852-9_2

6. Bansarkhani, R.E., Buchmann, J.: Improvement and efficient
implementation of a lattice-based signature scheme. In: Lange et al.
[30], pp. 48–67. https://doi.org/10.1007/978-3-662-43414-7_3

7. Barreto, P., Longa, P.,Naehrig,M.,Ricardini, J., Zanon,G.: Sharper
ring-lwe signatures. Cryptology ePrint Archive, Report 2016/1026
(2016). http://eprint.iacr.org/2016/1026

8. Bellare, M., Rogaway, P.: Entity authentication and key distribu-
tion. In: Stinson, D.R. (ed.) CRYPTO’93, LNCS, vol. 773, pp.
232–249. Springer, Heidelberg (1994)

9. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Nieder-
hagen, R., Papachristodoulou, L., Schneider, M., Schwabe, P.,
Wilcox-O’Hearn, Z.: SPHINCS: practical stateless hash-based sig-
natures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I, LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5_15

10. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum
key exchange for the TLS protocol from the ring learning with
errors problem. In: 2015 IEEESymposiumonSecurity andPrivacy,
pp. 553–570. IEEE Computer Society Press, San Jose, CA, USA
(2015). https://doi.org/10.1109/SP.2015.40

11. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption
from ring-LWE and security for key dependent messages. In: Rog-
away, P. (ed.) CRYPTO 2011, LNCS, vol. 6841, pp. 505–524.
Springer, Heidelberg (2011)

12. Buchmann, J., Cabarcas, D., Göpfert, F., Hülsing, A., Weiden, P.:
Discrete ziggurat: a time-memory trade-off for sampling from a
Gaussian distribution over the integers. In: Lange et al. [30], pp.
402–417. https://doi.org/10.1007/978-3-662-43414-7_20

13. Buchmann, J.A., Dahmen, E., Hülsing, A.: XMSS: a practi-
cal forward secure signature scheme based on minimal security
assumptions. In: Yang, B. (ed.) Post-Quantum Cryptography—4th
International Workshop, PQCrypto 2011, Taipei, Taiwan, Novem-
ber 29–December 2 2011. Proceedings, LectureNotes in Computer
Science, vol. 7071, pp. 117–129. Springer (2011)

14. Canetti, R., Krawczyk, H.: Security analysis of ike’s signature-
based key-exchange protocol. In: Advances in Cryptology—
CRYPTO 2002, 22nd Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, 18-22 August 2002, Pro-
ceedings, pp. 143–161 (2002)

15. Chen, A.I.T., Chen, M.S., Chen, T.R., Cheng, C.M., Ding, J., Kuo,
E.L.H., Lee, F.Y.S., Yang, B.Y.: SSE implementation of multivari-
ate PKCsonmodern x86CPUs. In:Clavier, C.,Gaj,K. (eds.)CHES
2009, LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009)

16. Dagdelen, Ö., Bansarkhani, R.E., Göpfert, F., Güneysu, T., Oder,
T., Pöppelmann, T., Sánchez, A.H., Schwabe, P.: High-speed sig-
natures from standard lattices. In: Aranha, D.F., Menezes, A. (eds.)
LATINCRYPT 2014, LNCS, vol. 8895, pp. 84–103. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-319-16295-9_5

17. del Pino, R., Lyubashevsky, V., Pointcheval, D.: The Whole is
Less Than the Sum of Its Parts: Constructing More Efficient
Lattice-Based AKEs, pp. 273–291. Springer International Publish-
ing, Cham (2016)

18. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Pro-
tocol Version 1.2. RFC 5246 (Proposed Standard) (2008). http://
www.ietf.org/rfc/rfc5246.txt. Updated by RFCs 5746, 5878, 6176

19. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial
signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.)
ACNS 05, LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg
(2005)

20. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange
scheme based on the learning with errors problem. Cryptology
ePrint Archive, Report 2012/688 (2012). http://eprint.iacr.org/
2012/688

21. Ducas, L.: Accelerating bliss: the geometry of ternary polynomials.
Cryptology ePrint Archive, Report 2014/874 (2014). http://eprint.
iacr.org/2014/874

22. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice sig-
natures and bimodal Gaussians. In: Canetti, R., Garay J.A. (eds.)
CRYPTO 2013, Part I, LNCS, vol. 8042, pp. 40–56. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

23. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete gaus-
sians for lattice-based cryptography on a constrained device. Appl.
Algebra Eng. Commun. Comput. 25(3), 159–180 (2014)

24. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and
post-quantum authenticated key exchange from one-way secure
key encapsulation mechanism. In: Chen, K., Xie, Q., Qiu, W.,
Li, N., Tzeng, W.G. (eds.) ASIACCS 13, pp. 83–94. ACM Press,
Hangzhou (2013)

25. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly
secure authenticated key exchange from factoring, codes, and lat-
tices. Des. Codes Cryptogr. 76(3), 469–504 (2015)

26. Fujisaki, E., Okamoto, T.: How to enhance the security of public-
key encryption at minimum cost. In: Imai, H., Zheng, Y. (eds.)
PKC’99, LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

27. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard
lattices and new cryptographic constructions. In: Ladner, R.E.,
Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, Vic-
toria (2008)

28. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-
based cryptography: a signature scheme for embedded systems. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012, LNCS, vol. 7428, pp.
530–547. Springer, Heidelberg (2012)

29. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chap-
man & Hall/Crc Cryptography and Network Security Series).
Chapman & Hall/CRC, Boca Raton (2007)

30. Krawczyk, H.: HMQV: a high-performance secureDiffie–Hellman
protocol. In: Shoup, V. (ed.) CRYPTO 2005, LNCS, vol. 3621, pp.
546–566. Springer, Heidelberg (2005)

31. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and
learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT
2010, LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and
learning with errors over rings. J. ACM 60(6), 43 (2013)

33. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE
cryptography. In: Advances in Cryptology—EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Athens, Greece, 26–30 May
2013. Proceedings, pp. 35–54 (2013)

123

http://eprint.iacr.org/2015/755
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-662-43414-7_3
http://eprint.iacr.org/2016/1026
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1007/978-3-662-43414-7_20
https://doi.org/10.1007/978-3-319-16295-9_5
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2014/874
http://eprint.iacr.org/2014/874
https://doi.org/10.1007/978-3-642-40041-4_3

718 N. Bindel et al.

34. National Institute of Standards and Technology (NIST): Post-
quantum cryptography: Nist’s plan for the future (2015)

35. National Security Agency (NSA): Cryptography today. https://
www.nsa.gov/ia/programs/suiteb_cryptography/ (2015)

36. Peikert, C.: An efficient and parallel Gaussian sampler for lattices.
In: Advances in Cryptology—CRYPTO 2010, 30th Annual Cryp-
tology Conference, Santa Barbara, CA, USA, 5–19 August 2010.
Proceedings, pp. 80–97 (2010)

37. Peikert, C.: Lattice cryptography for the internet. In: Post-
Quantum Cryptography—6th International Workshop, PQCrypto
2014, Waterloo, ON, Canada, 1–3 October 2014. Proceedings, pp.
197–219 (2014)

38. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor.
Comput. Sci. 10(4), 283–424 (2016)

39. Petzoldt, A., Chen, M., Yang, B., Tao, C., Ding, J.: Design princi-
ples for HFEv- based multivariate signature schemes. In: Iwata, T.,
Cheon, J.H.(eds.) Advances in Cryptology—ASIACRYPT 2015—
21st International Conference on the Theory and Application of

Cryptology and Information Security, Auckland, New Zealand,
November 29–December 3, 2015, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 9452, pp. 311–334. Springer
(2015). https://doi.org/10.1007/978-3-662-48797-6

40. Wolchok, S., Wustrow, E., Halderman, J.A., Prasad, H.K.,
Kankipati, A., Sakhamuri, S.K., Yagati, V., Gonggrijp, R.: Secu-
rity analysis of India’s electronic voting machines. In: Al-Shaer,
E., Keromytis, A.D., Shmatikov, V. (eds.) ACMCCS 10, pp. 1–14.
ACM Press, Chicago (2010)

41. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.:
Authenticated key exchange from ideal lattices. In: Advances
in Cryptology—EUROCRYPT 2015—34th Annual International
Conference on theTheory andApplications ofCryptographicTech-
niques, Sofia, Bulgaria, 26–30 April 2015, Proceedings, Part II, pp.
719–751 (2015)

123

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://doi.org/10.1007/978-3-662-48797-6

	Comparing apples with apples: performance analysis of lattice-based authenticated key exchange protocols
	Abstract
	1 Introduction
	1.1 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Lattice-based hardness assumptions
	2.3 Cryptographic primitives

	3 Overview of authenticated key exchange protocols
	4 Lattice-based KEMs and signature schemes
	4.1 Description of the KEM based on DXL
	4.2 Description of the KEM based on BCNS
	4.3 Description of the KEM based on NewHope
	4.4 Description of the KEM based on LPR
	4.5 Description of the signature scheme BLISS

	5 Instantiation and choice of parameters
	5.1 Instantiation of DXL
	5.2 Instantiation of BCNS
	5.3 Instantiation of NewHope
	5.4 Instantiations of LPR
	5.4.1 Instantiation of BLISS

	6 Evaluating the performance
	6.1 Running time of Gaussian sampling
	6.2 Running time of basic mathematical operations
	6.3 Running time of reconciliation and helper functions
	6.4 Running time of the hash function and uniform sampling
	6.5 Running time of the signature scheme BLISS
	6.6 Overall running times

	7 Description of AKE protocols
	7.1 The FSXY protocol
	7.2 The Peikert protocol
	7.3 The ZZDSD protocols

	8 Instantiations and performance results of the AKEs
	8.1 Concrete instantiation of ZZDSD
	8.2 Performance results of the AKEs

	9 Summary and evaluation
	Acknowledgements
	A Comparison of selected signature schemes from the literature
	References

